Spaces:
Sleeping
Sleeping
File size: 8,756 Bytes
c4d4675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# https://docs.anthropic.com/en/docs/build-with-claude/tool-use
# https://www.gradio.app/guides/plot-component-for-maps
# TODO: ask LLM what to improve
# TODO: improve layout
# TODO: add starter examples
# TODO: add multimodality (input/ooutput): gr.Image, gr.Video, gr.Audio, gr.File, gr.HTML, gr.Gallery, gr.Plot, gr.Map
# TODO: add streaming support
# TODO: trim down data from nearby places results (filling up context too much)
# TODO: host in spaces
from dotenv import load_dotenv
load_dotenv()
import time
import json
import anthropic
import gradio as gr
from gradio import ChatMessage
from tools import TOOLS_SPECS, TOOLS_FUNCTIONS
from utils.logger import setup_logger
# Setup logger
logger = setup_logger()
system_memory = []
app_context = {
"model_id" : "claude-3-5-sonnet-20241022",
"max_tokens" : 1024,
"system_memory" : system_memory,
"system_memory_max_size" : 5
}
tools_cache = {}
# TODO: this is a hack, if I don't fix this, multiple chats won't be supported
claude_history = []
client = anthropic.Anthropic()
def load_system_prompt():
with open('prompts/system.txt', 'r') as f:
return f.read().strip()
def get_memory_string():
return "\n".join([f"{index}: {value}" for index, value in enumerate(list(system_memory))]).strip()
def get_memory_markdown():
return "\n".join([f"{index}. {value}" for index, value in enumerate(list(system_memory))]).strip()
def prompt_claude():
# Build the system prompt including all memories the user asked to remember
system_prompt_memory_str = get_memory_string()
system_prompt_text = load_system_prompt()
if system_prompt_memory_str: system_prompt_text += f"\n\nHere are the memories the user asked you to remember:\n{system_prompt_memory_str}"
# Send message to Claude
model_id = app_context["model_id"]
max_tokens = app_context["max_tokens"]
message = client.messages.create(
model=model_id,
max_tokens=max_tokens,
temperature=0.0,
tools=TOOLS_SPECS.values(),
system=[{
"type": "text",
"text": system_prompt_text,
"cache_control": {"type": "ephemeral"} # Prompt caching references the entire prompt - tools, system, and messages (in that order) up to and including the block designated with cache_control.
}],
messages=claude_history
)
return message
def get_tool_generator(cached_yield, tool_function, app_context, tool_input):
"""Helper function to either yield cached result or run tool function"""
if cached_yield: yield cached_yield
else: yield from tool_function(app_context, **tool_input)
def chatbot(message, history):
logger.info(f"New message received: {message[:50]}...")
try:
# Store in claude history
claude_history.append({
"role": "user",
"content": message
})
messages = []
done = False
while not done:
done = True
claude_response = prompt_claude()
for content in claude_response.content:
if content.type == "text":
message = ChatMessage(
role="assistant",
content=content.text
)
messages.append(message)
yield messages, get_memory_markdown()
# Store in claude history
claude_history.append({
"role": "assistant",
"content": content.text
})
elif content.type == "tool_use":
tool_id = content.id
tool_name = content.name
tool_input = content.input
tool_key = f"{tool_name}_{json.dumps(tool_input)}" # TODO: sort input
tool_cached_yield = tools_cache.get(tool_key)
# Say that we're calling the tool
message = ChatMessage(
role="assistant",
content="...",
metadata={
"title" : f"🛠️ Using tool `{tool_name}`",
"status": "pending"
}
)
messages.append(message)
yield messages, get_memory_markdown()
# Call the tool
print(f"Calling {tool_name}({json.dumps(tool_input, indent=2)})")
tool_result = None
tool_statuses = []
tool_function = TOOLS_FUNCTIONS[tool_name]
tool_generator = get_tool_generator(tool_cached_yield, tool_function, app_context, tool_input)
tool_error = False
start_time = time.time()
try:
for tool_yield in tool_generator:
# Update tool status
status = tool_yield.get("status")
status_type = tool_yield.get("status_type", "current")
if status_type == "step": tool_statuses.append(status)
else: tool_statuses = tool_statuses[:-1] + [status]
message.content = "\n".join(tool_statuses)
# In case the tool is done, mark it as done
if "result" in tool_yield:
tool_result = tool_yield["result"]
print(f"Tool {tool_name} result: {json.dumps(tool_result, indent=2)}")
tools_cache[tool_key] = tool_yield
duration = time.time() - start_time
message.metadata["status"] = "done"
message.metadata["duration"] = duration
message.metadata["title"] = f"🛠️ Used tool `{tool_name}`"
# Update the chat history
yield messages, get_memory_markdown()
except Exception as tool_exception:
tool_error = str(tool_exception)
message.metadata["status"] = "done"
message.content = tool_error
message.metadata["title"] = f"💥 Tool `{tool_name}` failed"
# Store final result in claude history
claude_history.extend([
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": tool_id,
"name" : tool_name,
"input" : tool_input
}
]
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": tool_id,
"content": str(tool_error) if tool_error else str(tool_result),
"is_error" : bool(tool_error)
}
]
}
])
done = False
else:
raise Exception(f"Unknown content type {type(content)}")
logger.debug(f"Generated response: {messages[-1].content[:50]}...")
return messages, get_memory_markdown()
except Exception as e:
logger.error(f"Error processing message: {str(e)}", exc_info=True)
return "Sorry, an error occurred while processing your message."
with gr.Blocks() as demo:
memory = gr.Markdown(render=False)
with gr.Row(equal_height=True):
with gr.Column(scale=80, min_width=600):
gr.Markdown("<center><h1>Botty McBotface</h1></center>")
gr.ChatInterface(
fn=chatbot,
type="messages",
description="Botty McBotFace is really just another chatbot.",
additional_outputs=[memory],
)
with gr.Column(scale=20, min_width=150, variant="compact"):
gr.Markdown("<center><h1>Memory</h1></center>")
memory.render()
if __name__ == "__main__":
logger.info("Starting Botty McBotface...")
demo.launch() |