Spaces:
Running
Running
File size: 18,868 Bytes
75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 1cf80b8 ed71eea 75849d9 a9b5cb5 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 a9b5cb5 75849d9 92d2175 75849d9 92d2175 1cf80b8 75849d9 1cf80b8 ed71eea 75849d9 1cf80b8 92d2175 1cf80b8 75849d9 a9b5cb5 92d2175 1cf80b8 75849d9 1cf80b8 92d2175 75849d9 92d2175 75849d9 1cf80b8 a9b5cb5 92d2175 a9b5cb5 75849d9 a9b5cb5 92d2175 a9b5cb5 92d2175 a9b5cb5 92d2175 a9b5cb5 92d2175 a9b5cb5 75849d9 92d2175 a9b5cb5 92d2175 a9b5cb5 75849d9 a9b5cb5 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 a9b5cb5 92d2175 a9b5cb5 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 1cf80b8 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
"""
AI AGENT WITH LANGGRAPH + UTILS SYSTEM
Architecture:
- LangChain/LangGraph workflow với AI-driven routing
- Qwen3-8B làm main reasoning engine
- Utils system cung cấp tools
- AI tự quyết định tools và logic xử lý
"""
import os
import json
import time
from typing import Dict, Any, List, Optional, Annotated
from dotenv import load_dotenv
# LangChain imports
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
# LangGraph imports
from langgraph.graph import StateGraph, END
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict
# HuggingFace imports
from huggingface_hub import InferenceClient
# Groq imports for fallback
from groq import Groq
# Pydantic for structured output
from pydantic import BaseModel, Field
# Utils system imports
from utils import (
process_question_with_tools,
get_agent_state,
reset_agent_state,
ToolOrchestrator,
get_system_prompt,
get_response_prompt,
build_context_summary,
analyze_question_type
)
# Load environment
load_dotenv()
# =============================================================================
# LANGGRAPH STATE DEFINITION
# =============================================================================
class AgentState(TypedDict):
"""LangGraph state for AI agent"""
messages: Annotated[List, add_messages]
question: str
task_id: str
# AI Analysis
ai_analysis: Dict[str, Any]
should_use_tools: bool
# Tool processing
tool_processing_result: Dict[str, Any]
# Final response
final_answer: str
processing_complete: bool
# =============================================================================
# PYDANTIC SCHEMAS FOR STRUCTURED OUTPUT
# =============================================================================
class QuestionAnalysis(BaseModel):
"""Schema for AI question analysis"""
question_type: str = Field(description="Type: youtube|image|audio|wiki|file|text|math")
needs_tools: bool = Field(description="Whether tools are needed")
reasoning: str = Field(description="AI reasoning for the decision")
confidence: str = Field(description="Confidence level: high|medium|low")
can_answer_directly: bool = Field(description="Can answer without tools")
suggested_approach: str = Field(description="Brief description of approach")
class TextDecision(BaseModel):
"""Schema for reversed text decision"""
chosen_version: str = Field(description="original|reversed")
reasoning: str = Field(description="Reasoning for the choice")
confidence: str = Field(description="Confidence level: high|medium|low")
# =============================================================================
# AI BRAIN WITH LANGCHAIN
# =============================================================================
class LangChainQwen3Brain:
"""AI Brain using LangChain + HuggingFace with Groq fallback"""
def __init__(self):
# Primary: HuggingFace
self.hf_client = InferenceClient(
provider="auto",
api_key=os.environ.get("HF_TOKEN", "")
)
self.hf_model = "Qwen/Qwen3-8B"
# Fallback: Groq
self.groq_client = Groq(
api_key=os.environ.get("GROQ_API_KEY", "")
)
self.groq_model = "llama3-8b-8192"
# Setup parsers
self.json_parser = JsonOutputParser()
self.str_parser = StrOutputParser()
print("🧠 LangChain Hybrid Brain initialized (HF + Groq fallback)")
def _create_structured_model(self, schema: BaseModel):
"""Create model with structured output"""
try:
# Try HuggingFace with structured output
from langchain_huggingface import ChatHuggingFace
hf_model = ChatHuggingFace(
llm=self.hf_client,
model_id=self.hf_model
)
return hf_model.with_structured_output(schema)
except Exception as hf_error:
print(f"⚠️ HF structured output failed: {str(hf_error)[:50]}...")
try:
# Fallback to Groq with structured output
from langchain_groq import ChatGroq
groq_model = ChatGroq(
api_key=os.environ.get("GROQ_API_KEY", ""),
model=self.groq_model
)
return groq_model.with_structured_output(schema)
except Exception as groq_error:
print(f"⚠️ Both structured output failed")
return None
def _invoke_model(self, messages: List[Dict[str, str]]) -> str:
"""Invoke model with messages - try HF first, fallback to Groq"""
# Try HuggingFace first
try:
completion = self.hf_client.chat.completions.create(
model=self.hf_model,
messages=messages,
max_tokens=2048,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as hf_error:
print(f"⚠️ HuggingFace failed: {str(hf_error)[:100]}...")
print("🔄 Falling back to Groq...")
# Fallback to Groq
try:
completion = self.groq_client.chat.completions.create(
model=self.groq_model,
messages=messages,
max_tokens=2048,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as groq_error:
return f"AI Error: Both HF ({str(hf_error)[:50]}) and Groq ({str(groq_error)[:50]}) failed"
def analyze_question(self, question: str, task_id: str = "") -> Dict[str, Any]:
"""AI analyzes question and decides approach with structured output"""
# Create structured model
structured_model = self._create_structured_model(QuestionAnalysis)
if structured_model:
analysis_prompt = f"""
Analyze this question and decide the approach:
Question: "{question}"
Task ID: "{task_id}"
Important rules:
- If question asks about Mercedes Sosa albums, Wikipedia, historical facts -> use "wiki"
- If YouTube URL present -> use "youtube"
- If mentions image, photo, chess position -> use "image"
- If mentions audio, voice, mp3 -> use "audio"
- If mentions file attachment, Excel, CSV -> use "file"
- For math, tables, logic problems -> use "text" but needs_tools=false
- Be accurate about question_type to trigger correct tools
/no_thinking
"""
try:
result = structured_model.invoke(analysis_prompt)
return result.dict()
except Exception as e:
print(f"⚠️ Structured analysis failed: {str(e)[:50]}...")
# Fallback analysis
question_type = analyze_question_type(question)
return {
"question_type": question_type,
"needs_tools": bool(task_id) or question_type in ["wiki", "youtube", "image", "audio", "file"],
"reasoning": "Fallback analysis - structured output failed",
"confidence": "medium",
"can_answer_directly": question_type == "text" and not task_id,
"suggested_approach": f"Use {question_type} processing"
}
def generate_final_answer(self, question: str, tool_results: Dict[str, Any], context: str = "") -> str:
"""Generate final answer using LangChain"""
# Build context summary
if tool_results and tool_results.get("tool_results"):
context_summary = build_context_summary(
tool_results.get("tool_results", []),
tool_results.get("cached_data", {})
)
else:
context_summary = context or "No additional context available"
answer_prompt = get_response_prompt(
"final_answer",
question=question,
context_summary=context_summary
) + "\n\n/no_thinking"
messages = [
{"role": "system", "content": get_system_prompt("reasoning_agent")},
{"role": "user", "content": answer_prompt}
]
return self._invoke_model(messages)
def decide_on_reversed_text(self, original: str, reversed: str) -> Dict[str, Any]:
"""AI decides which version of text to use with structured output"""
# Create structured model
structured_model = self._create_structured_model(TextDecision)
if structured_model:
decision_prompt = f"""
You are analyzing two versions of the same text to determine which makes more sense:
Original: "{original}"
Reversed: "{reversed}"
Analyze both versions and decide which one is more likely to be the correct question.
Consider grammar, word order, and meaning.
/no_thinking
"""
try:
result = structured_model.invoke(decision_prompt)
return result.dict()
except Exception as e:
print(f"⚠️ Structured decision failed: {str(e)[:50]}...")
# Fallback decision
return {
"chosen_version": "reversed" if len(reversed.split()) > 3 else "original",
"reasoning": "Fallback decision based on text structure",
"confidence": "low"
}
# =============================================================================
# LANGGRAPH NODES
# =============================================================================
# Initialize AI brain
ai_brain = LangChainQwen3Brain()
def analyze_question_node(state: AgentState) -> AgentState:
"""AI analyzes the question and decides approach"""
question = state["question"]
task_id = state.get("task_id", "")
print(f"🔍 AI analyzing question: {question[:50]}...")
# Get AI analysis
analysis = ai_brain.analyze_question(question, task_id)
state["ai_analysis"] = analysis
# Determine if tools are needed
state["should_use_tools"] = analysis.get("needs_tools", True)
print(f"📊 AI Analysis:")
print(f" Type: {analysis.get('question_type', 'unknown')}")
print(f" Needs tools: {analysis.get('needs_tools', True)}")
print(f" Confidence: {analysis.get('confidence', 'medium')}")
print(f" Reasoning: {analysis.get('reasoning', 'No reasoning provided')}")
return state
def process_with_tools_node(state: AgentState) -> AgentState:
"""Process question using utils tool system"""
question = state["question"]
task_id = state.get("task_id", "")
print(f"🔧 Processing with tools...")
try:
# Use utils tool orchestrator
result = process_question_with_tools(question, task_id)
state["tool_processing_result"] = result
print(f"✅ Tool processing completed:")
print(f" Question type: {result.get('question_type', 'unknown')}")
print(f" Successful tools: {result.get('successful_tools', [])}")
print(f" Failed tools: {result.get('failed_tools', [])}")
except Exception as e:
print(f"❌ Tool processing failed: {str(e)}")
state["tool_processing_result"] = {
"error": str(e),
"processed_question": question,
"question_type": "error",
"tools_used": [],
"successful_tools": [],
"failed_tools": [],
"tool_results": [],
"cached_data": {}
}
return state
def answer_directly_node(state: AgentState) -> AgentState:
"""Answer question directly without tools"""
question = state["question"]
print(f"💭 AI answering directly...")
# Generate direct answer
direct_prompt = f"""
Answer this question directly based on your knowledge:
Question: {question}
Provide a clear, accurate, and helpful answer.
"""
messages = [
{"role": "system", "content": get_system_prompt("reasoning_agent")},
{"role": "user", "content": direct_prompt}
]
answer = ai_brain._invoke_model(messages)
state["final_answer"] = answer
state["processing_complete"] = True
return state
def generate_final_answer_node(state: AgentState) -> AgentState:
"""Generate final answer using AI + tool results"""
question = state["question"]
tool_results = state.get("tool_processing_result", {})
print(f"🎯 Generating final answer...")
# Generate comprehensive answer
answer = ai_brain.generate_final_answer(question, tool_results)
state["final_answer"] = answer
state["processing_complete"] = True
print(f"✅ Final answer generated")
return state
# =============================================================================
# LANGGRAPH WORKFLOW
# =============================================================================
def create_agent_workflow():
"""Create LangGraph workflow"""
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("analyze", analyze_question_node)
workflow.add_node("use_tools", process_with_tools_node)
workflow.add_node("direct_answer", answer_directly_node)
workflow.add_node("generate_answer", generate_final_answer_node)
# Routing logic
def should_use_tools(state: AgentState) -> str:
"""AI-driven routing decision"""
should_use = state.get("should_use_tools", True)
can_answer_directly = state.get("ai_analysis", {}).get("can_answer_directly", False)
if can_answer_directly and not should_use:
print("🚀 AI decided to answer directly")
return "direct_answer"
else:
print("🔧 AI decided to use tools")
return "use_tools"
# Add conditional edges
workflow.add_conditional_edges(
"analyze",
should_use_tools,
{
"use_tools": "use_tools",
"direct_answer": "direct_answer"
}
)
# Connect tool processing to final answer
workflow.add_edge("use_tools", "generate_answer")
# End edges
workflow.add_edge("direct_answer", END)
workflow.add_edge("generate_answer", END)
# Set entry point
workflow.set_entry_point("analyze")
return workflow.compile()
# =============================================================================
# MAIN AGENT CLASS
# =============================================================================
class LangGraphUtilsAgent:
"""Main AI Agent using LangGraph + Utils system"""
def __init__(self):
self.workflow = create_agent_workflow()
self.ai_brain = ai_brain
print("🤖 LangGraph Utils Agent initialized!")
print("🧠 AI Brain: LangChain + HuggingFace with Groq fallback")
print("🔧 Tools: YouTube, Image OCR, Audio Transcript, Wikipedia, File Reader, Text Processor")
print("⚡ Features: AI-driven routing, Smart tool selection, Multimodal processing")
def process_question(self, question: str, task_id: str = "") -> str:
"""Main entry point for processing questions"""
try:
print(f"\n🚀 Processing question: {question}")
print(f"📄 Task ID: {task_id or 'None'}")
# Reset agent state for new question
reset_agent_state()
# Initialize LangGraph state
initial_state = {
"messages": [HumanMessage(content=question)],
"question": question,
"task_id": task_id,
"ai_analysis": {},
"should_use_tools": True,
"tool_processing_result": {},
"final_answer": "",
"processing_complete": False
}
# Execute workflow
print("\n🔄 Starting LangGraph workflow...")
start_time = time.time()
final_state = self.workflow.invoke(initial_state)
execution_time = time.time() - start_time
print(f"\n⏱️ Total execution time: {execution_time:.2f} seconds")
# Return final answer
answer = final_state.get("final_answer", "No answer generated")
print(f"\n✅ Question processed successfully!")
return answer
except Exception as e:
error_msg = f"Agent processing error: {str(e)}"
print(f"\n❌ {error_msg}")
import traceback
traceback.print_exc()
return error_msg
# =============================================================================
# GLOBAL AGENT INSTANCE
# =============================================================================
# Create global agent
agent = LangGraphUtilsAgent()
def process_question(question: str, task_id: str = "") -> str:
"""Global function for processing questions"""
return agent.process_question(question, task_id)
# =============================================================================
# TESTING
# =============================================================================
if __name__ == "__main__":
print("🧪 Testing LangGraph Utils Agent\n")
test_cases = [
{
"question": "Who was Marie Curie?",
"task_id": "",
"description": "Wikipedia factual question"
},
{
"question": "What is 25 + 17 * 3?",
"task_id": "",
"description": "Math calculation"
},
{
"question": ".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI",
"task_id": "",
"description": "Reversed text question"
},
{
"question": "How many continents are there?",
"task_id": "",
"description": "General knowledge"
}
]
for i, test_case in enumerate(test_cases, 1):
print(f"\n{'='*60}")
print(f"TEST {i}: {test_case['description']}")
print(f"{'='*60}")
print(f"Question: {test_case['question']}")
try:
answer = process_question(test_case["question"], test_case["task_id"])
print(f"\nAnswer: {answer}")
except Exception as e:
print(f"\nTest failed: {str(e)}")
print(f"\n{'-'*60}")
print("\n✅ All tests completed!") |