| from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor | |
| import torch | |
| import librosa | |
| model_id = "facebook/mms-lid-1024" | |
| processor = AutoFeatureExtractor.from_pretrained(model_id) | |
| model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id) | |
| LID_SAMPLING_RATE = 16_000 | |
| LID_THRESHOLD = 0.33 | |
| LID_LANGUAGES = {} | |
| with open(f"data/lid/all_langs.tsv") as f: | |
| for line in f: | |
| iso, name = line.split(" ", 1) | |
| LID_LANGUAGES[iso] = name.strip() | |
| def identify_language(audio): | |
| if audio is None: | |
| return "ERROR: You have to either use the microphone or upload an audio file" | |
| audio_samples = librosa.load(audio, sr=LID_SAMPLING_RATE, mono=True)[0] | |
| inputs = processor(audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| inputs = inputs.to(device) | |
| with torch.no_grad(): | |
| logit = model(**inputs).logits | |
| logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1) | |
| scores, indices = torch.topk(logit_lsm, 5, dim=-1) | |
| scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist() | |
| iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)} | |
| if max(iso2score.values()) < LID_THRESHOLD: | |
| return "Low confidence in the language identification predictions. Output is not shown!" | |
| return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()} | |