Update tts.py
Browse files
tts.py
CHANGED
|
@@ -1,42 +1,19 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor
|
| 3 |
-
import logging
|
| 4 |
import numpy as np
|
| 5 |
-
import soundfile as sf
|
| 6 |
import torchaudio
|
| 7 |
-
|
| 8 |
-
# Set up logging
|
| 9 |
-
logging.basicConfig(level=logging.DEBUG)
|
| 10 |
-
|
| 11 |
-
MODEL_ID = "microsoft/speecht5_tts"
|
| 12 |
-
|
| 13 |
-
# Try to load the model and processor
|
| 14 |
-
try:
|
| 15 |
-
processor = SpeechT5Processor.from_pretrained(MODEL_ID)
|
| 16 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(MODEL_ID)
|
| 17 |
-
logging.info("Model and processor loaded successfully.")
|
| 18 |
-
except Exception as e:
|
| 19 |
-
logging.error(f"Error loading model or processor: {e}")
|
| 20 |
|
| 21 |
def synthesize_speech(text):
|
| 22 |
try:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
with torch.no_grad():
|
| 29 |
-
speech = model.generate(**inputs)
|
| 30 |
-
|
| 31 |
-
logging.info("Speech generated successfully.")
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
torchaudio.save(file_path, torch.tensor(waveform).unsqueeze(0), 16000)
|
| 38 |
-
logging.info(f"Audio file saved successfully at {file_path}.")
|
| 39 |
return file_path
|
| 40 |
except Exception as e:
|
| 41 |
-
logging.error(f"Error during
|
| 42 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
|
|
|
| 2 |
import torchaudio
|
| 3 |
+
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def synthesize_speech(text):
|
| 6 |
try:
|
| 7 |
+
# Generate a simple sine wave for testing
|
| 8 |
+
sr = 16000
|
| 9 |
+
t = np.linspace(0, 1, sr)
|
| 10 |
+
waveform = 0.5 * np.sin(2 * np.pi * 440 * t).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Save the sine wave to a file
|
| 13 |
+
file_path = "/tmp/output.wav"
|
| 14 |
+
torchaudio.save(file_path, torch.tensor(waveform).unsqueeze(0), sr)
|
| 15 |
+
logging.info(f"Test audio file saved successfully at {file_path}.")
|
|
|
|
|
|
|
| 16 |
return file_path
|
| 17 |
except Exception as e:
|
| 18 |
+
logging.error(f"Error during test audio generation: {e}")
|
| 19 |
return None
|