John Smith
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,35 +2,49 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Load model and tokenizer
|
| 6 |
model_name = "cognitivecomputations/TinyDolphin-2.8-1.1b"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
prompt += f"Human: {message}\nAssistant:"
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# Tokenize and generate
|
| 16 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
| 17 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 19 |
-
|
| 20 |
-
# Extract only the
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
# Create the Gradio interface
|
| 25 |
iface = gr.ChatInterface(
|
| 26 |
generate_response,
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
],
|
| 34 |
cache_examples=False,
|
| 35 |
)
|
| 36 |
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Load the model and tokenizer
|
| 6 |
model_name = "cognitivecomputations/TinyDolphin-2.8-1.1b"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
|
| 10 |
+
# Move model to GPU if available
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
model.to(device)
|
|
|
|
| 13 |
|
| 14 |
+
def generate_response(message, chat_history):
|
| 15 |
+
# Prepare the input
|
| 16 |
+
chat_history_text = ""
|
| 17 |
+
for turn in chat_history:
|
| 18 |
+
chat_history_text += f"Human: {turn[0]}\nAI: {turn[1]}\n"
|
| 19 |
+
|
| 20 |
+
prompt = f"{chat_history_text}Human: {message}\nAI:"
|
| 21 |
+
|
| 22 |
# Tokenize and generate
|
| 23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 24 |
+
outputs = model.generate(
|
| 25 |
+
**inputs,
|
| 26 |
+
max_new_tokens=100,
|
| 27 |
+
temperature=0.7,
|
| 28 |
+
top_p=0.9,
|
| 29 |
+
do_sample=True
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 33 |
+
|
| 34 |
+
# Extract only the AI's response
|
| 35 |
+
ai_response = response.split("AI:")[-1].strip()
|
| 36 |
+
|
| 37 |
+
return ai_response
|
| 38 |
|
| 39 |
# Create the Gradio interface
|
| 40 |
iface = gr.ChatInterface(
|
| 41 |
generate_response,
|
| 42 |
+
chatbot=gr.Chatbot(height=300),
|
| 43 |
+
textbox=gr.Textbox(placeholder="Type your message here...", container=False, scale=7),
|
| 44 |
+
title="TinyDolphin-2.8-1.1b Chatbot",
|
| 45 |
+
description="Chat with the TinyDolphin-2.8-1.1b model.",
|
| 46 |
+
theme="soft",
|
| 47 |
+
examples=["Tell me a short story", "What's the capital of France?", "Explain quantum computing"],
|
|
|
|
| 48 |
cache_examples=False,
|
| 49 |
)
|
| 50 |
|