Spaces:
Sleeping
Sleeping
File size: 18,126 Bytes
f054d36 01876de 474ac94 01876de 520455f a438543 01876de 474ac94 520455f 01876de 474ac94 571cf64 01876de 520455f ca7ea29 01876de 5037b39 a438543 474ac94 5037b39 474ac94 571cf64 520455f 474ac94 520455f 474ac94 520455f 474ac94 571cf64 520455f a438543 474ac94 520455f 474ac94 5037b39 01876de 474ac94 01876de 520455f 5037b39 01876de 520455f 01876de a438543 520455f 01876de 520455f 01876de 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 474ac94 9401f73 474ac94 5037b39 520455f 5037b39 520455f 5037b39 520455f 474ac94 5037b39 520455f 5037b39 520455f 474ac94 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 571cf64 520455f 5037b39 520455f 5037b39 520455f 571cf64 5037b39 571cf64 520455f a438543 571cf64 5037b39 571cf64 5037b39 520455f 571cf64 520455f 5037b39 571cf64 520455f 5037b39 520455f 571cf64 520455f 571cf64 5037b39 571cf64 474ac94 5037b39 520455f 5037b39 520455f 474ac94 5037b39 520455f 571cf64 5037b39 520455f 5037b39 474ac94 5037b39 571cf64 5037b39 01876de 520455f 571cf64 520455f 01876de 520455f 571cf64 5037b39 474ac94 520455f 5037b39 520455f a438543 571cf64 5037b39 a438543 520455f a438543 571cf64 520455f a438543 520455f 5037b39 571cf64 520455f 571cf64 520455f a438543 520455f 571cf64 520455f 571cf64 5037b39 571cf64 520455f 01876de 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 474ac94 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 520455f 5037b39 474ac94 520455f a438543 01876de 5037b39 a438543 5037b39 520455f 01876de 5037b39 474ac94 520455f 571cf64 520455f 474ac94 5037b39 520455f 5037b39 474ac94 5037b39 474ac94 520455f 5037b39 a438543 520455f 5037b39 a438543 520455f 5037b39 a438543 520455f 5037b39 a438543 5037b39 520455f a438543 5037b39 520455f 5037b39 474ac94 520455f 571cf64 520455f 571cf64 5037b39 520455f 5037b39 474ac94 5037b39 520455f 571cf64 520455f 474ac94 520455f 474ac94 571cf64 520455f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statistics import mode, StatisticsError
# scikit-learn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
# torch
import torch
import torch.nn as nn
import torch.nn.functional as F
# Transformers per la GenAI testuale
from transformers import pipeline
##################################################
# 1) FUNZIONE generate_synthetic_data (PRIMA DELL'USO)
##################################################
def generate_synthetic_data(n_samples=300, seed=42):
"""
Genera un dataset sintetico con:
- length, width, RUL, margin, shape, weight, thickness
- shape pescata da ["axisymmetric","sheet_metal","alloy_plate","complex_plastic"]
- RUL e margin con maggiore varianza
"""
np.random.seed(seed)
length = np.clip(np.random.normal(100,20,n_samples), 50, 250)
width = np.clip(np.random.normal(50,15,n_samples), 20, 150)
RUL = np.clip(np.random.normal(500,250,n_samples), 0, 1000).astype(int)
margin = np.clip(np.random.normal(150,150,n_samples), -200,600).astype(int)
shapes = np.random.choice(["axisymmetric","sheet_metal","alloy_plate","complex_plastic"],
size=n_samples, p=[0.4,0.3,0.2,0.1])
weight = np.clip(np.random.normal(80,30,n_samples), 10, 250)
thickness = np.clip(np.random.normal(8,4,n_samples), 0.5, 30)
return pd.DataFrame({
'length': length,
'width': width,
'RUL': RUL,
'margin': margin,
'shape': shapes,
'weight': weight,
'thickness': thickness
})
##################################################
# 2) MODELLI ML PLACEHOLDER
##################################################
class DummyTabTransformerClassifier:
def __init__(self, input_dim=8):
self.clf = MLPClassifier(hidden_layer_sizes=(16,8), max_iter=100, random_state=42)
def fit(self, X, y):
self.clf.fit(X,y)
return self
def predict(self, X):
return self.clf.predict(X)
def predict_proba(self, X):
if hasattr(self.clf,"predict_proba"):
return self.clf.predict_proba(X)
else:
preds=self.clf.predict(X)
return np.array([[1.0,0.0] if p==0 else [0.0,1.0] for p in preds])
MODELS_ML = {
"RandomForest": RandomForestClassifier(random_state=42, n_estimators=100),
"LogisticRegression": LogisticRegression(random_state=42, max_iter=500),
"SVM": SVC(probability=True, random_state=42),
"TabTransformer(Dummy)": DummyTabTransformerClassifier()
}
##################################################
# 3) VAE PER LA PARTE GENERATIVA (UPCYCLING)
##################################################
class MiniVAE(nn.Module):
def __init__(self, input_dim=5, latent_dim=2):
super().__init__()
self.fc1 = nn.Linear(input_dim,32)
self.fc21= nn.Linear(32,latent_dim)
self.fc22= nn.Linear(32,latent_dim)
self.fc3 = nn.Linear(latent_dim,32)
self.fc4 = nn.Linear(32,input_dim)
def encode(self,x):
h = F.relu(self.fc1(x))
return self.fc21(h), self.fc22(h)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self,z):
h=F.relu(self.fc3(z))
return self.fc4(h)
def forward(self,x):
mu,logvar=self.encode(x)
z=self.reparameterize(mu,logvar)
recon=self.decode(z)
return recon, mu, logvar
def vae_loss(recon_x,x,mu,logvar):
mse = F.mse_loss(recon_x,x,reduction='sum')
kld = -0.5*torch.sum(1+logvar - mu.pow(2)-logvar.exp())
return mse+kld
##################################################
# 4) COSTANTI E MAPPING FEATURE
##################################################
SHAPE_MAPPING = {"axisymmetric":0,"sheet_metal":1,"alloy_plate":2,"complex_plastic":3}
ML_FEATURES = ["length","width","shape_code","weight","thickness","RUL","margin","compat_dim"]
VAE_FEATURES = ["length","width","weight","thickness","shape_code"]
##################################################
# 5) UTILITY: dimension_match e assign_class
##################################################
def dimension_match(r, target_len, target_wid, t_shape, t_w, t_th,
tol_len, tol_wid, tol_we, tol_th):
c_len= abs(r["length"]-target_len)<=tol_len
c_wid= abs(r["width"]-target_wid)<= tol_wid
c_shp= (r["shape"]==t_shape)
c_wei= abs(r["weight"]-t_w)<=tol_we
c_thi= abs(r["thickness"]-t_th)<=tol_th
return 1 if (c_len and c_wid and c_shp and c_wei and c_thi) else 0
def assign_class(r, thr_score=0.5, alpha=0.5, beta=0.5):
rul_norm = r["RUL"]/1000.0
margin_norm= (r["margin"]+200)/800.0
score= alpha*rul_norm + beta*margin_norm
if r["compat_dim"]==1 and score>=thr_score:
return "Riutilizzo Funzionale"
else:
return "Upcycling Creativo"
##################################################
# STEP 1: DATASET
##################################################
def step1_dataset():
st.header("Step 1: Dataset")
colA, colB = st.columns(2)
with colA:
data_opt= st.radio("Fonte Dati", ["Genera","Carica CSV"], horizontal=True)
data=None
if data_opt=="Genera":
n= st.slider("Campioni sintetici",100,2000,300,step=100)
if st.button("Genera"):
data= generate_synthetic_data(n_samples=n)
st.session_state["data_source"]="generated"
else:
upl= st.file_uploader("Carica CSV con col. minime [length,width,RUL,margin,shape,weight,thickness]", type=["csv"])
if upl:
df= pd.read_csv(upl)
needed=["length","width","RUL","margin","shape","weight","thickness"]
if not all(c in df.columns for c in needed):
st.error("CSV non valido. Manca qualche colonna.")
else:
data=df
st.session_state["data_source"]="uploaded"
with colB:
st.markdown("**Parametri Compatibilità**")
t_len= st.number_input("Lunghezza target",50.0,300.0,100.0)
t_wid= st.number_input("Larghezza target",20.0,200.0,50.0)
t_shp= st.selectbox("Forma target", list(SHAPE_MAPPING.keys()))
t_wei= st.number_input("Peso target (kg)",5.0,300.0,80.0)
t_thi= st.number_input("Spessore target (mm)",0.5,50.0,8.0)
st.markdown("**Tolleranze**")
tol_len= st.slider("Tol len ±",0.0,30.0,5.0)
tol_wid= st.slider("Tol wid ±",0.0,20.0,3.0)
tol_wei= st.slider("Tol weight ±",0.0,50.0,10.0)
tol_thi= st.slider("Tol thick ±",0.0,5.0,1.0)
st.markdown("**Score RUL & Margin**")
thr= st.slider("Soglia Score",0.0,1.0,0.5)
alpha= st.slider("Peso RUL(α)",0.0,1.0,0.5)
beta= st.slider("Peso Margin(β)",0.0,1.0,0.5)
if data is not None:
data['shape_code']= data['shape'].map(SHAPE_MAPPING).fillna(-1).astype(int)
data['compat_dim']= data.apply(lambda r: dimension_match(r, t_len, t_wid, t_shp, t_wei, t_thi,
tol_len, tol_wid, tol_wei, tol_thi),
axis=1)
data['Target'] = data.apply(lambda r: assign_class(r, thr_score=thr, alpha=alpha, beta=beta), axis=1)
st.dataframe(data.head(10))
st.write("Distrib. Target:", data["Target"].value_counts())
st.session_state["data"]= data
csv=data.to_csv(index=False).encode('utf-8')
st.download_button("Scarica dataset elaborato", csv, "dataset_processed.csv")
##################################################
# STEP 2: ADD ML
##################################################
def step2_trainML():
st.header("Step 2: Addestramento ML")
data= st.session_state.get("data",None)
if data is None:
st.error("Devi completare Step 1.")
return
if "Target" not in data.columns:
st.error("Manca colonna 'Target'. Rivedi Step 1.")
return
features_ml=[f for f in ML_FEATURES if f in data.columns]
if not features_ml:
st.error("Mancano feature minime ML.")
return
X= data[features_ml]
y= data["Target"].map({"Riutilizzo Funzionale":0,"Upcycling Creativo":1})
if len(y.unique())<2:
st.error("Dataset ha una sola classe. Impossibile train.")
return
X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.25,random_state=42,stratify=y)
st.write(f"Train={len(X_train)}, Test={len(X_test)}")
trained={}
results=[]
for nome,model in MODELS_ML.items():
st.subheader(f"Modello: {nome}")
from sklearn.pipeline import Pipeline
pipe= Pipeline([
("scaler",StandardScaler()),
("clf",model)
])
try:
pipe.fit(X_train,y_train)
y_pred= pipe.predict(X_test)
acc= accuracy_score(y_test,y_pred)
f1= f1_score(y_test,y_pred,average='weighted')
results.append({"Modello":nome,"Accuracy":acc,"F1":f1})
trained[nome]= pipe
cm= confusion_matrix(y_test,y_pred)
fig, ax= plt.subplots()
sns.heatmap(cm, annot=True, fmt='d', cmap="Greens", ax=ax)
plt.xlabel("Pred")
plt.ylabel("True")
st.pyplot(fig)
st.metric("Accuracy",f"{acc:.3f}")
st.metric("F1 Score",f"{f1:.3f}")
except Exception as e:
st.error(f"Errore training {nome}: {e}")
if results:
df_r= pd.DataFrame(results).sort_values(by="Accuracy", ascending=False)
st.dataframe(df_r)
st.session_state["models"]= trained
st.session_state["ml_results"]= df_r
else:
st.error("Nessun modello addestrato.")
st.session_state["models"]=None
##################################################
# STEP 2B: TRAIN VAE
##################################################
def step2b_trainVAE():
st.header("Step 2B: Training VAE per Upcycling")
data= st.session_state.get("data",None)
if data is None:
st.error("Completa Step 1.")
return
feats= [f for f in VAE_FEATURES if f in data.columns]
if not feats:
st.error(f"Mancano feature per VAE: {VAE_FEATURES}")
return
st.write("Useremo le feature:", feats)
lat_dim= st.slider("Dim latente VAE",2,10,2)
ep= st.number_input("Epochs",10,300,50)
lr= st.number_input("Learning Rate",1e-5,1e-2,1e-3, format="%e")
bs= st.selectbox("Batch size",[16,32,64],index=1)
if not st.session_state.get("vae_trained",False):
st.warning("VAE non addestrato")
if st.button("Allena VAE"):
st.session_state["vae"]= MiniVAE(input_dim=len(feats), latent_dim=lat_dim)
from sklearn.preprocessing import StandardScaler
X_vae= data[feats].copy()
for c in X_vae.columns:
if X_vae[c].isnull().any():
X_vae[c].fillna(X_vae[c].median(), inplace=True)
scaler= StandardScaler()
X_s= scaler.fit_transform(X_vae)
st.session_state["vae_scaler"]= scaler
dataset= torch.utils.data.TensorDataset(torch.tensor(X_s,dtype=torch.float32))
loader= torch.utils.data.DataLoader(dataset,batch_size=bs,shuffle=True)
vae= st.session_state["vae"]
opt= torch.optim.Adam(vae.parameters(),lr=lr)
losses=[]
vae.train()
for epoch in range(int(ep)):
ep_loss=0
for (batch,) in loader:
opt.zero_grad()
recon, mu, logvar= vae(batch)
loss= vae_loss(recon,batch,mu,logvar)
loss.backward()
opt.step()
ep_loss+=loss.item()
avgL= ep_loss/len(dataset)
losses.append(avgL)
st.progress((epoch+1)/ep)
st.success(f"VAE addestrato (Loss ~ {avgL:.2f})")
st.line_chart(losses)
st.session_state["vae_trained"]= True
else:
st.success("VAE già addestrato.")
if st.button("Riallena"):
st.session_state["vae_trained"]=False
st.experimental_rerun()
##################################################
# STEP 3: Upcycling Generative
##################################################
def step3_upcycling_generative():
st.header("Step 3: Upcycling Generative - VAE + GenAI")
if not st.session_state.get("vae_trained",False):
st.error("Devi addestrare il VAE in Step 2B prima.")
return
vae= st.session_state.get("vae",None)
vae_scaler= st.session_state.get("vae_scaler",None)
if vae is None or vae_scaler is None:
st.error("Mancano vae o scaler.")
return
lat_dim= vae.fc21.out_features
st.write(f"VAE con lat_dim={lat_dim}. Generiamo idee upcycling.")
n_ideas= st.number_input("Quante idee generare",1,10,3)
if st.button("Genera Upcycling"):
vae.eval()
with torch.no_grad():
z=torch.randn(n_ideas,lat_dim)
recon= vae.decode(z)
arr= recon.numpy()
try:
df_gen= pd.DataFrame(vae_scaler.inverse_transform(arr), columns=vae_scaler.feature_names_in_)
# shape_code -> shape
if 'shape_code' in df_gen.columns:
df_gen['shape_code']= df_gen['shape_code'].round().astype(int)
inv_map={0:"axisymmetric",1:"sheet_metal",2:"alloy_plate",3:"complex_plastic"}
df_gen['shape']= df_gen['shape_code'].map(inv_map).fillna('unknown')
st.subheader("Configurazioni Generate (VAE)")
st.dataframe(df_gen.round(2))
# Aggiungiamo GenAI test
st.markdown("### Suggerimenti Testuali Upcycling (distilgpt2)")
text_generator = pipeline("text-generation",
model="distilgpt2",
device=0 if torch.cuda.is_available() else -1)
def gen_upcycle_text(shape, thick, wei):
prompt = (
f"Ho un componente EoL con forma {shape}, spessore {thick:.1f} mm, peso {wei:.1f} kg.\n"
"Dammi un'idea creativa di upcycling in italiano, con passaggi principali:"
)
out= text_generator(prompt, max_new_tokens=50, do_sample=True, top_k=50)
return out[0]["generated_text"]
for i, row in df_gen.iterrows():
sh= row.get("shape","unknown")
tk= row.get("thickness",1.0)
we= row.get("weight",10.0)
text_sugg= gen_upcycle_text(sh, tk, we)
st.write(f"**Idea {i+1}**: shape={sh}, thickness={tk:.1f}, weight={we:.1f}")
st.info(text_sugg)
st.markdown("---")
except Exception as e:
st.error(f"Errore decodifica VAE: {e}")
##################################################
# DASHBOARD
##################################################
def show_dashboard():
st.header("Dashboard")
data= st.session_state.get("data",None)
if data is None:
st.error("Nessun dataset.")
return
st.write("Distribuzione classi Target:", data["Target"].value_counts())
if "ml_results" in st.session_state:
st.subheader("Risultati ML")
st.dataframe(st.session_state["ml_results"])
else:
st.info("Nessun risultato ML")
if st.session_state.get("vae_trained",False):
st.success("VAE addestrato.")
else:
st.warning("VAE non addestrato.")
##################################################
# HELP
##################################################
def show_help():
st.header("ℹ️ Guida Quattro Step")
st.markdown("""
1. **Step 1: Dataset**
Generi o carichi CSV, definisci compatibilità, e assegni 'Riutilizzo' vs 'Upcycling'.
2. **Step 2: Addestramento ML**
Allena modelli (RandomForest, ecc.) su [Riutilizzo vs Upcycling].
3. **Step 2B: Training VAE**
Allena VAE sulle feature geometriche (length, width, weight, thickness, shape_code).
4. **Step 3: Upcycling Generative**
Genera N configurazioni col VAE e, per ognuna, ottieni un testo creativo di upcycling con un modello HF (distilgpt2).
**Dashboard**: metriche.
**Reset**: pulsante nella sidebar che cancella lo state.
""")
##################################################
# RESET
##################################################
def reset_app():
for k in ["data","models","ml_results","vae","vae_trained","vae_scaler","data_source","params_dim"]:
if k in st.session_state:
del st.session_state[k]
st.success("App resettata.")
st.experimental_rerun()
##################################################
# MAIN
##################################################
def main():
st.sidebar.title("WEEKO – 4 Step Flow")
step= st.sidebar.radio("Fasi:",[
"Step 1: Dataset",
"Step 2: Addestramento ML",
"Step 2B: Training VAE",
"Step 3: Upcycling Generative",
"Dashboard",
"Help"
])
if st.sidebar.button("Reset App"):
reset_app()
if step=="Step 1: Dataset":
step1_dataset()
elif step=="Step 2: Addestramento ML":
step2_trainML()
elif step=="Step 2B: Training VAE":
step2b_trainVAE()
elif step=="Step 3: Upcycling Generative":
step3_upcycling_generative()
elif step=="Dashboard":
show_dashboard()
elif step=="Help":
show_help()
if __name__=="__main__":
main() |