File size: 18,126 Bytes
f054d36
01876de
 
474ac94
 
 
01876de
520455f
 
a438543
01876de
474ac94
520455f
01876de
474ac94
571cf64
01876de
520455f
ca7ea29
 
 
01876de
5037b39
a438543
474ac94
5037b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474ac94
571cf64
520455f
474ac94
520455f
474ac94
 
 
 
520455f
474ac94
571cf64
520455f
a438543
474ac94
520455f
 
 
 
 
474ac94
 
5037b39
 
 
01876de
474ac94
01876de
520455f
 
 
 
 
 
5037b39
01876de
 
520455f
01876de
a438543
520455f
 
01876de
520455f
 
 
 
01876de
 
520455f
 
5037b39
520455f
 
5037b39
 
 
520455f
5037b39
 
 
 
 
 
 
 
520455f
5037b39
520455f
5037b39
 
520455f
 
 
 
5037b39
520455f
 
474ac94
9401f73
474ac94
 
5037b39
 
 
520455f
 
5037b39
 
 
 
520455f
5037b39
 
520455f
 
 
474ac94
5037b39
520455f
 
5037b39
 
520455f
 
 
 
474ac94
5037b39
 
 
 
520455f
5037b39
 
 
 
 
 
 
 
 
 
 
520455f
 
 
5037b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520455f
5037b39
520455f
 
5037b39
520455f
 
5037b39
571cf64
 
520455f
 
5037b39
520455f
5037b39
520455f
571cf64
5037b39
571cf64
520455f
a438543
571cf64
5037b39
571cf64
5037b39
520455f
571cf64
520455f
5037b39
571cf64
 
 
520455f
 
 
 
5037b39
 
520455f
 
 
 
571cf64
 
 
520455f
571cf64
 
 
5037b39
571cf64
474ac94
5037b39
520455f
5037b39
520455f
474ac94
5037b39
520455f
571cf64
5037b39
 
 
520455f
5037b39
474ac94
5037b39
571cf64
5037b39
01876de
520455f
571cf64
520455f
01876de
520455f
571cf64
5037b39
 
 
 
474ac94
520455f
5037b39
520455f
a438543
 
 
571cf64
 
5037b39
a438543
520455f
a438543
571cf64
520455f
a438543
520455f
 
5037b39
571cf64
 
 
520455f
571cf64
520455f
a438543
520455f
571cf64
520455f
 
 
 
571cf64
5037b39
571cf64
520455f
01876de
5037b39
 
 
 
520455f
5037b39
520455f
5037b39
520455f
5037b39
520455f
 
5037b39
520455f
 
 
 
5037b39
520455f
 
5037b39
 
474ac94
5037b39
520455f
 
 
5037b39
520455f
 
 
5037b39
520455f
 
 
5037b39
 
520455f
 
 
 
5037b39
 
 
 
520455f
 
 
5037b39
 
520455f
 
 
 
 
 
5037b39
 
 
 
 
 
520455f
 
 
 
 
5037b39
520455f
5037b39
474ac94
520455f
 
a438543
 
01876de
5037b39
a438543
5037b39
520455f
 
01876de
5037b39
474ac94
520455f
 
571cf64
520455f
474ac94
5037b39
520455f
5037b39
474ac94
5037b39
474ac94
520455f
5037b39
a438543
520455f
5037b39
a438543
520455f
5037b39
a438543
520455f
5037b39
a438543
5037b39
 
520455f
a438543
5037b39
520455f
5037b39
474ac94
520455f
571cf64
 
520455f
571cf64
 
5037b39
520455f
5037b39
474ac94
5037b39
 
520455f
 
 
 
 
 
571cf64
520455f
 
 
 
 
 
 
 
 
 
 
 
474ac94
520455f
474ac94
 
571cf64
520455f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statistics import mode, StatisticsError

# scikit-learn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier

# torch
import torch
import torch.nn as nn
import torch.nn.functional as F

# Transformers per la GenAI testuale
from transformers import pipeline

##################################################
# 1) FUNZIONE generate_synthetic_data (PRIMA DELL'USO)
##################################################
def generate_synthetic_data(n_samples=300, seed=42):
    """
    Genera un dataset sintetico con:
    - length, width, RUL, margin, shape, weight, thickness
    - shape pescata da ["axisymmetric","sheet_metal","alloy_plate","complex_plastic"]
    - RUL e margin con maggiore varianza
    """
    np.random.seed(seed)
    length = np.clip(np.random.normal(100,20,n_samples), 50, 250)
    width  = np.clip(np.random.normal(50,15,n_samples), 20, 150)
    RUL    = np.clip(np.random.normal(500,250,n_samples), 0, 1000).astype(int)
    margin = np.clip(np.random.normal(150,150,n_samples), -200,600).astype(int)
    shapes = np.random.choice(["axisymmetric","sheet_metal","alloy_plate","complex_plastic"], 
                              size=n_samples, p=[0.4,0.3,0.2,0.1])
    weight = np.clip(np.random.normal(80,30,n_samples), 10, 250)
    thickness = np.clip(np.random.normal(8,4,n_samples), 0.5, 30)

    return pd.DataFrame({
        'length': length,
        'width': width,
        'RUL': RUL,
        'margin': margin,
        'shape': shapes,
        'weight': weight,
        'thickness': thickness
    })

##################################################
# 2) MODELLI ML PLACEHOLDER
##################################################
class DummyTabTransformerClassifier:
    def __init__(self, input_dim=8):
        self.clf = MLPClassifier(hidden_layer_sizes=(16,8), max_iter=100, random_state=42)
    def fit(self, X, y):
        self.clf.fit(X,y)
        return self
    def predict(self, X):
        return self.clf.predict(X)
    def predict_proba(self, X):
        if hasattr(self.clf,"predict_proba"):
            return self.clf.predict_proba(X)
        else:
            preds=self.clf.predict(X)
            return np.array([[1.0,0.0] if p==0 else [0.0,1.0] for p in preds])

MODELS_ML = {
    "RandomForest": RandomForestClassifier(random_state=42, n_estimators=100),
    "LogisticRegression": LogisticRegression(random_state=42, max_iter=500),
    "SVM": SVC(probability=True, random_state=42),
    "TabTransformer(Dummy)": DummyTabTransformerClassifier()
}

##################################################
# 3) VAE PER LA PARTE GENERATIVA (UPCYCLING)
##################################################
class MiniVAE(nn.Module):
    def __init__(self, input_dim=5, latent_dim=2):
        super().__init__()
        self.fc1 = nn.Linear(input_dim,32)
        self.fc21= nn.Linear(32,latent_dim)
        self.fc22= nn.Linear(32,latent_dim)
        self.fc3 = nn.Linear(latent_dim,32)
        self.fc4 = nn.Linear(32,input_dim)
    def encode(self,x):
        h = F.relu(self.fc1(x))
        return self.fc21(h), self.fc22(h)
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std
    def decode(self,z):
        h=F.relu(self.fc3(z))
        return self.fc4(h)
    def forward(self,x):
        mu,logvar=self.encode(x)
        z=self.reparameterize(mu,logvar)
        recon=self.decode(z)
        return recon, mu, logvar

def vae_loss(recon_x,x,mu,logvar):
    mse = F.mse_loss(recon_x,x,reduction='sum')
    kld = -0.5*torch.sum(1+logvar - mu.pow(2)-logvar.exp())
    return mse+kld

##################################################
# 4) COSTANTI E MAPPING FEATURE
##################################################
SHAPE_MAPPING = {"axisymmetric":0,"sheet_metal":1,"alloy_plate":2,"complex_plastic":3}
ML_FEATURES   = ["length","width","shape_code","weight","thickness","RUL","margin","compat_dim"]
VAE_FEATURES  = ["length","width","weight","thickness","shape_code"]

##################################################
# 5) UTILITY: dimension_match e assign_class
##################################################
def dimension_match(r, target_len, target_wid, t_shape, t_w, t_th, 
                    tol_len, tol_wid, tol_we, tol_th):
    c_len= abs(r["length"]-target_len)<=tol_len
    c_wid= abs(r["width"]-target_wid)<= tol_wid
    c_shp= (r["shape"]==t_shape)
    c_wei= abs(r["weight"]-t_w)<=tol_we
    c_thi= abs(r["thickness"]-t_th)<=tol_th
    return 1 if (c_len and c_wid and c_shp and c_wei and c_thi) else 0

def assign_class(r, thr_score=0.5, alpha=0.5, beta=0.5):
    rul_norm = r["RUL"]/1000.0
    margin_norm= (r["margin"]+200)/800.0
    score= alpha*rul_norm + beta*margin_norm
    if r["compat_dim"]==1 and score>=thr_score:
        return "Riutilizzo Funzionale"
    else:
        return "Upcycling Creativo"

##################################################
# STEP 1: DATASET
##################################################
def step1_dataset():
    st.header("Step 1: Dataset")

    colA, colB = st.columns(2)
    with colA:
        data_opt= st.radio("Fonte Dati", ["Genera","Carica CSV"], horizontal=True)
        data=None
        if data_opt=="Genera":
            n= st.slider("Campioni sintetici",100,2000,300,step=100)
            if st.button("Genera"):
                data= generate_synthetic_data(n_samples=n)
                st.session_state["data_source"]="generated"
        else:
            upl= st.file_uploader("Carica CSV con col. minime [length,width,RUL,margin,shape,weight,thickness]", type=["csv"])
            if upl:
                df= pd.read_csv(upl)
                needed=["length","width","RUL","margin","shape","weight","thickness"]
                if not all(c in df.columns for c in needed):
                    st.error("CSV non valido. Manca qualche colonna.")
                else:
                    data=df
                    st.session_state["data_source"]="uploaded"

    with colB:
        st.markdown("**Parametri Compatibilità**")
        t_len= st.number_input("Lunghezza target",50.0,300.0,100.0)
        t_wid= st.number_input("Larghezza target",20.0,200.0,50.0)
        t_shp= st.selectbox("Forma target", list(SHAPE_MAPPING.keys()))
        t_wei= st.number_input("Peso target (kg)",5.0,300.0,80.0)
        t_thi= st.number_input("Spessore target (mm)",0.5,50.0,8.0)

        st.markdown("**Tolleranze**")
        tol_len= st.slider("Tol len ±",0.0,30.0,5.0)
        tol_wid= st.slider("Tol wid ±",0.0,20.0,3.0)
        tol_wei= st.slider("Tol weight ±",0.0,50.0,10.0)
        tol_thi= st.slider("Tol thick ±",0.0,5.0,1.0)

        st.markdown("**Score RUL & Margin**")
        thr= st.slider("Soglia Score",0.0,1.0,0.5)
        alpha= st.slider("Peso RUL(α)",0.0,1.0,0.5)
        beta= st.slider("Peso Margin(β)",0.0,1.0,0.5)

    if data is not None:
        data['shape_code']= data['shape'].map(SHAPE_MAPPING).fillna(-1).astype(int)
        data['compat_dim']= data.apply(lambda r: dimension_match(r, t_len, t_wid, t_shp, t_wei, t_thi, 
                                                                 tol_len, tol_wid, tol_wei, tol_thi), 
                                       axis=1)
        data['Target']    = data.apply(lambda r: assign_class(r, thr_score=thr, alpha=alpha, beta=beta), axis=1)

        st.dataframe(data.head(10))
        st.write("Distrib. Target:", data["Target"].value_counts())
        st.session_state["data"]= data
        csv=data.to_csv(index=False).encode('utf-8')
        st.download_button("Scarica dataset elaborato", csv, "dataset_processed.csv")

##################################################
# STEP 2: ADD ML
##################################################
def step2_trainML():
    st.header("Step 2: Addestramento ML")
    data= st.session_state.get("data",None)
    if data is None:
        st.error("Devi completare Step 1.")
        return
    if "Target" not in data.columns:
        st.error("Manca colonna 'Target'. Rivedi Step 1.")
        return

    features_ml=[f for f in ML_FEATURES if f in data.columns]
    if not features_ml:
        st.error("Mancano feature minime ML.")
        return
    X= data[features_ml]
    y= data["Target"].map({"Riutilizzo Funzionale":0,"Upcycling Creativo":1})
    if len(y.unique())<2:
        st.error("Dataset ha una sola classe. Impossibile train.")
        return
    X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.25,random_state=42,stratify=y)
    st.write(f"Train={len(X_train)}, Test={len(X_test)}")

    trained={}
    results=[]
    for nome,model in MODELS_ML.items():
        st.subheader(f"Modello: {nome}")
        from sklearn.pipeline import Pipeline
        pipe= Pipeline([
            ("scaler",StandardScaler()),
            ("clf",model)
        ])
        try:
            pipe.fit(X_train,y_train)
            y_pred= pipe.predict(X_test)
            acc= accuracy_score(y_test,y_pred)
            f1= f1_score(y_test,y_pred,average='weighted')
            results.append({"Modello":nome,"Accuracy":acc,"F1":f1})
            trained[nome]= pipe

            cm= confusion_matrix(y_test,y_pred)
            fig, ax= plt.subplots()
            sns.heatmap(cm, annot=True, fmt='d', cmap="Greens", ax=ax)
            plt.xlabel("Pred")
            plt.ylabel("True")
            st.pyplot(fig)

            st.metric("Accuracy",f"{acc:.3f}")
            st.metric("F1 Score",f"{f1:.3f}")
        except Exception as e:
            st.error(f"Errore training {nome}: {e}")

    if results:
        df_r= pd.DataFrame(results).sort_values(by="Accuracy", ascending=False)
        st.dataframe(df_r)
        st.session_state["models"]= trained
        st.session_state["ml_results"]= df_r
    else:
        st.error("Nessun modello addestrato.")
        st.session_state["models"]=None

##################################################
# STEP 2B: TRAIN VAE
##################################################
def step2b_trainVAE():
    st.header("Step 2B: Training VAE per Upcycling")

    data= st.session_state.get("data",None)
    if data is None:
        st.error("Completa Step 1.")
        return
    feats= [f for f in VAE_FEATURES if f in data.columns]
    if not feats:
        st.error(f"Mancano feature per VAE: {VAE_FEATURES}")
        return
    st.write("Useremo le feature:", feats)

    lat_dim= st.slider("Dim latente VAE",2,10,2)
    ep= st.number_input("Epochs",10,300,50)
    lr= st.number_input("Learning Rate",1e-5,1e-2,1e-3, format="%e")
    bs= st.selectbox("Batch size",[16,32,64],index=1)

    if not st.session_state.get("vae_trained",False):
        st.warning("VAE non addestrato")
        if st.button("Allena VAE"):
            st.session_state["vae"]= MiniVAE(input_dim=len(feats), latent_dim=lat_dim)
            from sklearn.preprocessing import StandardScaler
            X_vae= data[feats].copy()
            for c in X_vae.columns:
                if X_vae[c].isnull().any():
                    X_vae[c].fillna(X_vae[c].median(), inplace=True)
            scaler= StandardScaler()
            X_s= scaler.fit_transform(X_vae)
            st.session_state["vae_scaler"]= scaler

            dataset= torch.utils.data.TensorDataset(torch.tensor(X_s,dtype=torch.float32))
            loader= torch.utils.data.DataLoader(dataset,batch_size=bs,shuffle=True)
            vae= st.session_state["vae"]
            opt= torch.optim.Adam(vae.parameters(),lr=lr)

            losses=[]
            vae.train()
            for epoch in range(int(ep)):
                ep_loss=0
                for (batch,) in loader:
                    opt.zero_grad()
                    recon, mu, logvar= vae(batch)
                    loss= vae_loss(recon,batch,mu,logvar)
                    loss.backward()
                    opt.step()
                    ep_loss+=loss.item()
                avgL= ep_loss/len(dataset)
                losses.append(avgL)
                st.progress((epoch+1)/ep)
            st.success(f"VAE addestrato (Loss ~ {avgL:.2f})")
            st.line_chart(losses)
            st.session_state["vae_trained"]= True
    else:
        st.success("VAE già addestrato.")
        if st.button("Riallena"):
            st.session_state["vae_trained"]=False
            st.experimental_rerun()

##################################################
# STEP 3: Upcycling Generative
##################################################
def step3_upcycling_generative():
    st.header("Step 3: Upcycling Generative - VAE + GenAI")

    if not st.session_state.get("vae_trained",False):
        st.error("Devi addestrare il VAE in Step 2B prima.")
        return
    vae= st.session_state.get("vae",None)
    vae_scaler= st.session_state.get("vae_scaler",None)
    if vae is None or vae_scaler is None:
        st.error("Mancano vae o scaler.")
        return

    lat_dim= vae.fc21.out_features
    st.write(f"VAE con lat_dim={lat_dim}. Generiamo idee upcycling.")

    n_ideas= st.number_input("Quante idee generare",1,10,3)
    if st.button("Genera Upcycling"):
        vae.eval()
        with torch.no_grad():
            z=torch.randn(n_ideas,lat_dim)
            recon= vae.decode(z)
        arr= recon.numpy()
        try:
            df_gen= pd.DataFrame(vae_scaler.inverse_transform(arr), columns=vae_scaler.feature_names_in_)
            # shape_code -> shape
            if 'shape_code' in df_gen.columns:
                df_gen['shape_code']= df_gen['shape_code'].round().astype(int)
                inv_map={0:"axisymmetric",1:"sheet_metal",2:"alloy_plate",3:"complex_plastic"}
                df_gen['shape']= df_gen['shape_code'].map(inv_map).fillna('unknown')

            st.subheader("Configurazioni Generate (VAE)")
            st.dataframe(df_gen.round(2))

            # Aggiungiamo GenAI test
            st.markdown("### Suggerimenti Testuali Upcycling (distilgpt2)")
            text_generator = pipeline("text-generation", 
                                      model="distilgpt2",
                                      device=0 if torch.cuda.is_available() else -1)

            def gen_upcycle_text(shape, thick, wei):
                prompt = (
                  f"Ho un componente EoL con forma {shape}, spessore {thick:.1f} mm, peso {wei:.1f} kg.\n"
                  "Dammi un'idea creativa di upcycling in italiano, con passaggi principali:"
                )
                out= text_generator(prompt, max_new_tokens=50, do_sample=True, top_k=50)
                return out[0]["generated_text"]

            for i, row in df_gen.iterrows():
                sh= row.get("shape","unknown")
                tk= row.get("thickness",1.0)
                we= row.get("weight",10.0)
                text_sugg= gen_upcycle_text(sh, tk, we)
                st.write(f"**Idea {i+1}**: shape={sh}, thickness={tk:.1f}, weight={we:.1f}")
                st.info(text_sugg)
                st.markdown("---")

        except Exception as e:
            st.error(f"Errore decodifica VAE: {e}")

##################################################
# DASHBOARD
##################################################
def show_dashboard():
    st.header("Dashboard")
    data= st.session_state.get("data",None)
    if data is None:
        st.error("Nessun dataset.")
        return
    st.write("Distribuzione classi Target:", data["Target"].value_counts())

    if "ml_results" in st.session_state:
        st.subheader("Risultati ML")
        st.dataframe(st.session_state["ml_results"])
    else:
        st.info("Nessun risultato ML")

    if st.session_state.get("vae_trained",False):
        st.success("VAE addestrato.")
    else:
        st.warning("VAE non addestrato.")

##################################################
# HELP
##################################################
def show_help():
    st.header("ℹ️ Guida Quattro Step")
    st.markdown("""
1. **Step 1: Dataset**  
   Generi o carichi CSV, definisci compatibilità, e assegni 'Riutilizzo' vs 'Upcycling'.

2. **Step 2: Addestramento ML**  
   Allena modelli (RandomForest, ecc.) su [Riutilizzo vs Upcycling].

3. **Step 2B: Training VAE**  
   Allena VAE sulle feature geometriche (length, width, weight, thickness, shape_code).

4. **Step 3: Upcycling Generative**  
   Genera N configurazioni col VAE e, per ognuna, ottieni un testo creativo di upcycling con un modello HF (distilgpt2).  

**Dashboard**: metriche.  
**Reset**: pulsante nella sidebar che cancella lo state.
    """)

##################################################
# RESET
##################################################
def reset_app():
    for k in ["data","models","ml_results","vae","vae_trained","vae_scaler","data_source","params_dim"]:
        if k in st.session_state:
            del st.session_state[k]
    st.success("App resettata.")
    st.experimental_rerun()

##################################################
# MAIN
##################################################
def main():
    st.sidebar.title("WEEKO – 4 Step Flow")
    step= st.sidebar.radio("Fasi:",[
        "Step 1: Dataset",
        "Step 2: Addestramento ML",
        "Step 2B: Training VAE",
        "Step 3: Upcycling Generative",
        "Dashboard",
        "Help"
    ])
    if st.sidebar.button("Reset App"):
        reset_app()

    if step=="Step 1: Dataset":
        step1_dataset()
    elif step=="Step 2: Addestramento ML":
        step2_trainML()
    elif step=="Step 2B: Training VAE":
        step2b_trainVAE()
    elif step=="Step 3: Upcycling Generative":
        step3_upcycling_generative()
    elif step=="Dashboard":
        show_dashboard()
    elif step=="Help":
        show_help()

if __name__=="__main__":
    main()