Spaces:
Runtime error
Runtime error
init
Browse files
README.md
CHANGED
|
@@ -3,7 +3,7 @@ title: Glide Text2im
|
|
| 3 |
emoji: π
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
-
sdk:
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
---
|
|
|
|
| 3 |
emoji: π
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
+
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
---
|
app.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
import base64
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
# from fastapi import FastAPI
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch as th
|
| 10 |
+
|
| 11 |
+
from glide_text2im.download import load_checkpoint
|
| 12 |
+
from glide_text2im.model_creation import (
|
| 13 |
+
create_model_and_diffusion,
|
| 14 |
+
model_and_diffusion_defaults,
|
| 15 |
+
model_and_diffusion_defaults_upsampler
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# print("Loading models...")
|
| 19 |
+
# app = FastAPI()
|
| 20 |
+
|
| 21 |
+
# This notebook supports both CPU and GPU.
|
| 22 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 23 |
+
# On a GPU, it should be under a minute.
|
| 24 |
+
|
| 25 |
+
has_cuda = th.cuda.is_available()
|
| 26 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 27 |
+
|
| 28 |
+
# Create base model.
|
| 29 |
+
options = model_and_diffusion_defaults()
|
| 30 |
+
options['use_fp16'] = has_cuda
|
| 31 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
| 32 |
+
model, diffusion = create_model_and_diffusion(**options)
|
| 33 |
+
model.eval()
|
| 34 |
+
if has_cuda:
|
| 35 |
+
model.convert_to_fp16()
|
| 36 |
+
model.to(device)
|
| 37 |
+
model.load_state_dict(load_checkpoint('base', device))
|
| 38 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
| 39 |
+
|
| 40 |
+
# Create upsampler model.
|
| 41 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
| 42 |
+
options_up['use_fp16'] = has_cuda
|
| 43 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 44 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 45 |
+
model_up.eval()
|
| 46 |
+
if has_cuda:
|
| 47 |
+
model_up.convert_to_fp16()
|
| 48 |
+
model_up.to(device)
|
| 49 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 50 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_images(batch: th.Tensor):
|
| 54 |
+
""" Display a batch of images inline. """
|
| 55 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 56 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 57 |
+
Image.fromarray(reshaped.numpy())
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Create a classifier-free guidance sampling function
|
| 61 |
+
guidance_scale = 3.0
|
| 62 |
+
|
| 63 |
+
def model_fn(x_t, ts, **kwargs):
|
| 64 |
+
half = x_t[: len(x_t) // 2]
|
| 65 |
+
combined = th.cat([half, half], dim=0)
|
| 66 |
+
model_out = model(combined, ts, **kwargs)
|
| 67 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 68 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
| 69 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 70 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
| 71 |
+
return th.cat([eps, rest], dim=1)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# @app.get("/")
|
| 75 |
+
def read_root():
|
| 76 |
+
return {"glide!"}
|
| 77 |
+
|
| 78 |
+
# @app.get("/{generate}")
|
| 79 |
+
def sample(prompt):
|
| 80 |
+
# Sampling parameters
|
| 81 |
+
batch_size = 1
|
| 82 |
+
|
| 83 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 84 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 85 |
+
upsample_temp = 0.997
|
| 86 |
+
|
| 87 |
+
##############################
|
| 88 |
+
# Sample from the base model #
|
| 89 |
+
##############################
|
| 90 |
+
|
| 91 |
+
# Create the text tokens to feed to the model.
|
| 92 |
+
tokens = model.tokenizer.encode(prompt)
|
| 93 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
| 94 |
+
tokens, options['text_ctx']
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Create the classifier-free guidance tokens (empty)
|
| 98 |
+
full_batch_size = batch_size * 2
|
| 99 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 100 |
+
[], options['text_ctx']
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Pack the tokens together into model kwargs.
|
| 104 |
+
model_kwargs = dict(
|
| 105 |
+
tokens=th.tensor(
|
| 106 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
| 107 |
+
),
|
| 108 |
+
mask=th.tensor(
|
| 109 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
| 110 |
+
dtype=th.bool,
|
| 111 |
+
device=device,
|
| 112 |
+
),
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Sample from the base model.
|
| 116 |
+
model.del_cache()
|
| 117 |
+
samples = diffusion.p_sample_loop(
|
| 118 |
+
model_fn,
|
| 119 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 120 |
+
device=device,
|
| 121 |
+
clip_denoised=True,
|
| 122 |
+
progress=True,
|
| 123 |
+
model_kwargs=model_kwargs,
|
| 124 |
+
cond_fn=None,
|
| 125 |
+
)[:batch_size]
|
| 126 |
+
model.del_cache()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
##############################
|
| 130 |
+
# Upsample the 64x64 samples #
|
| 131 |
+
##############################
|
| 132 |
+
|
| 133 |
+
tokens = model_up.tokenizer.encode(prompt)
|
| 134 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 135 |
+
tokens, options_up['text_ctx']
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Create the model conditioning dict.
|
| 139 |
+
model_kwargs = dict(
|
| 140 |
+
# Low-res image to upsample.
|
| 141 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
| 142 |
+
|
| 143 |
+
# Text tokens
|
| 144 |
+
tokens=th.tensor(
|
| 145 |
+
[tokens] * batch_size, device=device
|
| 146 |
+
),
|
| 147 |
+
mask=th.tensor(
|
| 148 |
+
[mask] * batch_size,
|
| 149 |
+
dtype=th.bool,
|
| 150 |
+
device=device,
|
| 151 |
+
),
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Sample from the base model.
|
| 155 |
+
model_up.del_cache()
|
| 156 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 157 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
| 158 |
+
model_up,
|
| 159 |
+
up_shape,
|
| 160 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 161 |
+
device=device,
|
| 162 |
+
clip_denoised=True,
|
| 163 |
+
progress=True,
|
| 164 |
+
model_kwargs=model_kwargs,
|
| 165 |
+
cond_fn=None,
|
| 166 |
+
)[:batch_size]
|
| 167 |
+
model_up.del_cache()
|
| 168 |
+
|
| 169 |
+
# Show the output
|
| 170 |
+
image = get_images(up_samples)
|
| 171 |
+
image = to_base64(image)
|
| 172 |
+
# return {"image": image}
|
| 173 |
+
return image
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def to_base64(pil_image):
|
| 177 |
+
buffered = BytesIO()
|
| 178 |
+
pil_image.save(buffered, format="JPEG")
|
| 179 |
+
return base64.b64encode(buffered.getvalue())
|
| 180 |
+
|
| 181 |
+
title = "Interactive demo: glide-text2im"
|
| 182 |
+
description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
|
| 183 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
| 184 |
+
examples =["Eiffel tower"]
|
| 185 |
+
|
| 186 |
+
iface = gr.Interface(fn=sample,
|
| 187 |
+
inputs=gr.inputs.Image(type="text"),
|
| 188 |
+
outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
|
| 189 |
+
title=title,
|
| 190 |
+
description=description,
|
| 191 |
+
article=article,
|
| 192 |
+
examples=examples,
|
| 193 |
+
enable_queue=True)
|
| 194 |
+
iface.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/openai/glide-text2im.git
|
| 2 |
+
fastapi
|
| 3 |
+
uvicorn
|
server.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
from fastapi import FastAPI
|
| 4 |
+
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch as th
|
| 7 |
+
|
| 8 |
+
from glide_text2im.download import load_checkpoint
|
| 9 |
+
from glide_text2im.model_creation import (
|
| 10 |
+
create_model_and_diffusion,
|
| 11 |
+
model_and_diffusion_defaults,
|
| 12 |
+
model_and_diffusion_defaults_upsampler
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
print("Loading models...")
|
| 16 |
+
app = FastAPI()
|
| 17 |
+
|
| 18 |
+
# This notebook supports both CPU and GPU.
|
| 19 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 20 |
+
# On a GPU, it should be under a minute.
|
| 21 |
+
|
| 22 |
+
has_cuda = th.cuda.is_available()
|
| 23 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 24 |
+
|
| 25 |
+
# Create base model.
|
| 26 |
+
options = model_and_diffusion_defaults()
|
| 27 |
+
options['use_fp16'] = has_cuda
|
| 28 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
| 29 |
+
model, diffusion = create_model_and_diffusion(**options)
|
| 30 |
+
model.eval()
|
| 31 |
+
if has_cuda:
|
| 32 |
+
model.convert_to_fp16()
|
| 33 |
+
model.to(device)
|
| 34 |
+
model.load_state_dict(load_checkpoint('base', device))
|
| 35 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
| 36 |
+
|
| 37 |
+
# Create upsampler model.
|
| 38 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
| 39 |
+
options_up['use_fp16'] = has_cuda
|
| 40 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 41 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 42 |
+
model_up.eval()
|
| 43 |
+
if has_cuda:
|
| 44 |
+
model_up.convert_to_fp16()
|
| 45 |
+
model_up.to(device)
|
| 46 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 47 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_images(batch: th.Tensor):
|
| 51 |
+
""" Display a batch of images inline. """
|
| 52 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 53 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 54 |
+
Image.fromarray(reshaped.numpy())
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Create a classifier-free guidance sampling function
|
| 58 |
+
guidance_scale = 3.0
|
| 59 |
+
|
| 60 |
+
def model_fn(x_t, ts, **kwargs):
|
| 61 |
+
half = x_t[: len(x_t) // 2]
|
| 62 |
+
combined = th.cat([half, half], dim=0)
|
| 63 |
+
model_out = model(combined, ts, **kwargs)
|
| 64 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 65 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
| 66 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 67 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
| 68 |
+
return th.cat([eps, rest], dim=1)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@app.get("/")
|
| 72 |
+
def read_root():
|
| 73 |
+
return {"glide!"}
|
| 74 |
+
|
| 75 |
+
@app.get("/{generate}")
|
| 76 |
+
def sample(prompt):
|
| 77 |
+
# Sampling parameters
|
| 78 |
+
batch_size = 1
|
| 79 |
+
|
| 80 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 81 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 82 |
+
upsample_temp = 0.997
|
| 83 |
+
|
| 84 |
+
##############################
|
| 85 |
+
# Sample from the base model #
|
| 86 |
+
##############################
|
| 87 |
+
|
| 88 |
+
# Create the text tokens to feed to the model.
|
| 89 |
+
tokens = model.tokenizer.encode(prompt)
|
| 90 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
| 91 |
+
tokens, options['text_ctx']
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Create the classifier-free guidance tokens (empty)
|
| 95 |
+
full_batch_size = batch_size * 2
|
| 96 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 97 |
+
[], options['text_ctx']
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Pack the tokens together into model kwargs.
|
| 101 |
+
model_kwargs = dict(
|
| 102 |
+
tokens=th.tensor(
|
| 103 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
| 104 |
+
),
|
| 105 |
+
mask=th.tensor(
|
| 106 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
| 107 |
+
dtype=th.bool,
|
| 108 |
+
device=device,
|
| 109 |
+
),
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Sample from the base model.
|
| 113 |
+
model.del_cache()
|
| 114 |
+
samples = diffusion.p_sample_loop(
|
| 115 |
+
model_fn,
|
| 116 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 117 |
+
device=device,
|
| 118 |
+
clip_denoised=True,
|
| 119 |
+
progress=True,
|
| 120 |
+
model_kwargs=model_kwargs,
|
| 121 |
+
cond_fn=None,
|
| 122 |
+
)[:batch_size]
|
| 123 |
+
model.del_cache()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
##############################
|
| 127 |
+
# Upsample the 64x64 samples #
|
| 128 |
+
##############################
|
| 129 |
+
|
| 130 |
+
tokens = model_up.tokenizer.encode(prompt)
|
| 131 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 132 |
+
tokens, options_up['text_ctx']
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Create the model conditioning dict.
|
| 136 |
+
model_kwargs = dict(
|
| 137 |
+
# Low-res image to upsample.
|
| 138 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
| 139 |
+
|
| 140 |
+
# Text tokens
|
| 141 |
+
tokens=th.tensor(
|
| 142 |
+
[tokens] * batch_size, device=device
|
| 143 |
+
),
|
| 144 |
+
mask=th.tensor(
|
| 145 |
+
[mask] * batch_size,
|
| 146 |
+
dtype=th.bool,
|
| 147 |
+
device=device,
|
| 148 |
+
),
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Sample from the base model.
|
| 152 |
+
model_up.del_cache()
|
| 153 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 154 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
| 155 |
+
model_up,
|
| 156 |
+
up_shape,
|
| 157 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 158 |
+
device=device,
|
| 159 |
+
clip_denoised=True,
|
| 160 |
+
progress=True,
|
| 161 |
+
model_kwargs=model_kwargs,
|
| 162 |
+
cond_fn=None,
|
| 163 |
+
)[:batch_size]
|
| 164 |
+
model_up.del_cache()
|
| 165 |
+
|
| 166 |
+
# Show the output
|
| 167 |
+
image = get_images(up_samples)
|
| 168 |
+
image = to_base64(image)
|
| 169 |
+
return {"image": image}
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def to_base64(pil_image):
|
| 173 |
+
buffered = BytesIO()
|
| 174 |
+
pil_image.save(buffered, format="JPEG")
|
| 175 |
+
return base64.b64encode(buffered.getvalue())
|