Spaces:
Running
Running
| from .utils import Prompter, tokenize_long_prompt | |
| from transformers import CLIPTokenizer | |
| from ..models import SDTextEncoder | |
| import os | |
| class SDPrompter(Prompter): | |
| def __init__(self, tokenizer_path=None): | |
| if tokenizer_path is None: | |
| base_path = os.path.dirname(os.path.dirname(__file__)) | |
| tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") | |
| super().__init__() | |
| self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) | |
| def encode_prompt(self, text_encoder: SDTextEncoder, prompt, clip_skip=1, device="cuda", positive=True): | |
| prompt = self.process_prompt(prompt, positive=positive) | |
| input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) | |
| prompt_emb = text_encoder(input_ids, clip_skip=clip_skip) | |
| prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) | |
| return prompt_emb |