Spaces:
Sleeping
Sleeping
added tabs
Browse files- app.py +93 -91
- constants.py +6 -0
- evaluation_metrics.py +1 -1
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import streamlit as st
|
| 3 |
-
|
|
|
|
| 4 |
from annotated_text.util import get_annotated_html
|
| 5 |
from streamlit_annotation_tools import text_labeler
|
| 6 |
|
|
|
|
| 7 |
from evaluation_metrics import EVALUATION_METRICS
|
| 8 |
from predefined_example import EXAMPLES
|
| 9 |
from span_dataclass_converters import (
|
|
@@ -26,110 +28,110 @@ def get_examples_attributes(selected_example):
|
|
| 26 |
|
| 27 |
if __name__ == "__main__":
|
| 28 |
st.set_page_config(layout="wide")
|
| 29 |
-
st.title("NER Metrics Comparison")
|
| 30 |
|
| 31 |
st.write(
|
| 32 |
"Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
|
| 33 |
)
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
format_func=lambda ex: ex.text,
|
| 42 |
-
)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
get_ner_spans_from_annotations(gt_labels), text
|
| 51 |
)
|
| 52 |
-
)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
st.write(
|
| 80 |
-
|
| 81 |
)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
st.write(highlighted_predictions_df.to_html(escape=False), unsafe_allow_html=True)
|
| 106 |
-
st.divider()
|
| 107 |
-
|
| 108 |
-
### EVALUATION METRICS COMPARISION ###
|
| 109 |
-
|
| 110 |
-
st.subheader("Evaluation Metrics Comparision") # , divider='rainbow')
|
| 111 |
-
st.markdown("""
|
| 112 |
-
The different evaluation metrics we have for the NER task are
|
| 113 |
-
- Span Based Evaluation with Partial Overlap
|
| 114 |
-
- Token Based Evaluation with Micro Avg
|
| 115 |
-
- Token Based Evaluation with Macro Avg
|
| 116 |
-
""")
|
| 117 |
-
|
| 118 |
-
with st.expander("View Predictions Details"):
|
| 119 |
-
st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)
|
| 120 |
-
|
| 121 |
-
if st.button("Get Metrics!"):
|
| 122 |
-
for evaluation_metric in EVALUATION_METRICS:
|
| 123 |
-
predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply(
|
| 124 |
-
lambda ner_spans: evaluation_metric.get_evaluation_metric(
|
| 125 |
-
# metric_type=evaluation_metric_type,
|
| 126 |
-
gt_ner_span=gt_spans,
|
| 127 |
-
pred_ner_span=ner_spans,
|
| 128 |
-
text=text,
|
| 129 |
-
tags=tags,
|
| 130 |
)
|
| 131 |
-
)
|
| 132 |
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import streamlit as st
|
| 3 |
+
|
| 4 |
+
# from annotated_text import annotated_text
|
| 5 |
from annotated_text.util import get_annotated_html
|
| 6 |
from streamlit_annotation_tools import text_labeler
|
| 7 |
|
| 8 |
+
from constants import PREDICTION_ADDITION_INSTRUCTION
|
| 9 |
from evaluation_metrics import EVALUATION_METRICS
|
| 10 |
from predefined_example import EXAMPLES
|
| 11 |
from span_dataclass_converters import (
|
|
|
|
| 28 |
|
| 29 |
if __name__ == "__main__":
|
| 30 |
st.set_page_config(layout="wide")
|
| 31 |
+
st.title("📈 NER Metrics Comparison ⚖️")
|
| 32 |
|
| 33 |
st.write(
|
| 34 |
"Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
|
| 35 |
)
|
| 36 |
+
explanation_tab, comparision_tab = st.tabs(["📙 Explanation", "⚖️ Comparision"])
|
| 37 |
|
| 38 |
+
with explanation_tab:
|
| 39 |
+
st.write("This is the place holder for explanation of all the metrics")
|
| 40 |
|
| 41 |
+
with comparision_tab:
|
| 42 |
+
# with st.container():
|
| 43 |
+
st.subheader("Ground Truth & Predictions") # , divider='rainbow')
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
selected_example = st.selectbox(
|
| 46 |
+
"Select an example text from the drop down below",
|
| 47 |
+
[example for example in EXAMPLES],
|
| 48 |
+
format_func=lambda ex: ex.text,
|
| 49 |
+
)
|
| 50 |
|
| 51 |
+
text, gt_labels, gt_spans, predictions, tags = get_examples_attributes(
|
| 52 |
+
selected_example
|
|
|
|
| 53 |
)
|
|
|
|
| 54 |
|
| 55 |
+
# annotated_text(
|
| 56 |
+
# get_highlight_spans_from_ner_spans(
|
| 57 |
+
# get_ner_spans_from_annotations(gt_labels), text
|
| 58 |
+
# )
|
| 59 |
+
# )
|
| 60 |
+
|
| 61 |
+
annotated_predictions = [
|
| 62 |
+
get_annotated_html(get_highlight_spans_from_ner_spans(ner_span, text))
|
| 63 |
+
for ner_span in predictions
|
| 64 |
+
]
|
| 65 |
+
predictions_df = pd.DataFrame(
|
| 66 |
+
{
|
| 67 |
+
# "ID": [f"Prediction_{index}" for index in range(len(predictions))],
|
| 68 |
+
"Prediction": annotated_predictions,
|
| 69 |
+
"ner_spans": predictions,
|
| 70 |
+
},
|
| 71 |
+
index=["Ground Truth"]
|
| 72 |
+
+ [f"Prediction_{index}" for index in range(len(predictions) - 1)],
|
| 73 |
+
)
|
| 74 |
|
| 75 |
+
# st.subheader("Predictions") # , divider='rainbow')
|
| 76 |
|
| 77 |
+
with st.expander("Click to Add Predictions"):
|
| 78 |
+
st.subheader("Adding predictions")
|
| 79 |
+
st.markdown(PREDICTION_ADDITION_INSTRUCTION)
|
| 80 |
+
st.write(
|
| 81 |
+
"Note: Only the spans of the selected label name is shown at a given instance.",
|
| 82 |
+
)
|
| 83 |
+
labels = text_labeler(text, gt_labels)
|
| 84 |
+
st.json(labels, expanded=False)
|
| 85 |
+
|
| 86 |
+
# if st.button("Add Prediction"):
|
| 87 |
+
# labels = text_labeler(text)
|
| 88 |
+
if st.button("Add!"):
|
| 89 |
+
spans = get_ner_spans_from_annotations(labels)
|
| 90 |
+
spans = sorted(spans, key=lambda span: span["start"])
|
| 91 |
+
predictions.append(spans)
|
| 92 |
+
annotated_predictions.append(
|
| 93 |
+
get_annotated_html(get_highlight_spans_from_ner_spans(spans, text))
|
| 94 |
+
)
|
| 95 |
+
predictions_df = pd.DataFrame(
|
| 96 |
+
{
|
| 97 |
+
# "ID": [f"Prediction_{index}" for index in range(len(predictions))],
|
| 98 |
+
"Prediction": annotated_predictions,
|
| 99 |
+
"ner_spans": predictions,
|
| 100 |
+
},
|
| 101 |
+
index=["Ground Truth"]
|
| 102 |
+
+ [f"Prediction_{index}" for index in range(len(predictions) - 1)],
|
| 103 |
+
)
|
| 104 |
+
print("added")
|
| 105 |
+
|
| 106 |
+
highlighted_predictions_df = predictions_df[["Prediction"]]
|
| 107 |
st.write(
|
| 108 |
+
highlighted_predictions_df.to_html(escape=False), unsafe_allow_html=True
|
| 109 |
)
|
| 110 |
+
st.divider()
|
| 111 |
+
|
| 112 |
+
### EVALUATION METRICS COMPARISION ###
|
| 113 |
+
|
| 114 |
+
st.subheader("Evaluation Metrics Comparision") # , divider='rainbow')
|
| 115 |
+
st.markdown(
|
| 116 |
+
"The different evaluation metrics we have for the NER task are\n"
|
| 117 |
+
f"{''.join(['- '+evaluation_metric.name+'\n' for evaluation_metric in EVALUATION_METRICS])}"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
with st.expander("View Predictions Details"):
|
| 121 |
+
st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)
|
| 122 |
+
|
| 123 |
+
if st.button("Get Metrics!"):
|
| 124 |
+
for evaluation_metric in EVALUATION_METRICS:
|
| 125 |
+
predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply(
|
| 126 |
+
lambda ner_spans: evaluation_metric.get_evaluation_metric(
|
| 127 |
+
# metric_type=evaluation_metric_type,
|
| 128 |
+
gt_ner_span=gt_spans,
|
| 129 |
+
pred_ner_span=ner_spans,
|
| 130 |
+
text=text,
|
| 131 |
+
tags=tags,
|
| 132 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
|
|
|
| 134 |
|
| 135 |
+
metrics_df = predictions_df.drop(["ner_spans"], axis=1)
|
| 136 |
|
| 137 |
+
st.write(metrics_df.to_html(escape=False), unsafe_allow_html=True)
|
constants.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PREDICTION_ADDITION_INSTRUCTION = """
|
| 2 |
+
Add predictions to the list of predictions on which the evaluation metric will be caculated.
|
| 3 |
+
- Select the entity type/label name and then highlight the span in the text below.
|
| 4 |
+
- To remove a span, double click on the higlighted text.
|
| 5 |
+
- Once you have your desired prediction, click on the 'Add' button.(The prediction created is shown in a json below)
|
| 6 |
+
"""
|
evaluation_metrics.py
CHANGED
|
@@ -47,7 +47,7 @@ class TokenMicroMetric(EvaluationMetric):
|
|
| 47 |
def __init__(self) -> None:
|
| 48 |
super().__init__()
|
| 49 |
|
| 50 |
-
self.name = "
|
| 51 |
self.description = ""
|
| 52 |
|
| 53 |
@staticmethod
|
|
|
|
| 47 |
def __init__(self) -> None:
|
| 48 |
super().__init__()
|
| 49 |
|
| 50 |
+
self.name = "Token Based Evaluation with Micro Average"
|
| 51 |
self.description = ""
|
| 52 |
|
| 53 |
@staticmethod
|