|  | import gradio as gr | 
					
						
						|  | from text_to_video import model_t2v_fun,setup_seed | 
					
						
						|  | from omegaconf import OmegaConf | 
					
						
						|  | import torch | 
					
						
						|  | import imageio | 
					
						
						|  | import os | 
					
						
						|  | import cv2 | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import torchvision | 
					
						
						|  | import random | 
					
						
						|  | from models import get_models | 
					
						
						|  |  | 
					
						
						|  | from pipelines.pipeline_videogen import VideoGenPipeline | 
					
						
						|  | from download import find_model | 
					
						
						|  | from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler | 
					
						
						|  | from diffusers.models import AutoencoderKL | 
					
						
						|  | from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_path = "./base/configs/sample.yaml" | 
					
						
						|  | args = OmegaConf.load("./base/configs/sample.yaml") | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  |  | 
					
						
						|  | css = """ | 
					
						
						|  | h1 { | 
					
						
						|  | text-align: center; | 
					
						
						|  | } | 
					
						
						|  | #component-0 { | 
					
						
						|  | max-width: 730px; | 
					
						
						|  | margin: auto; | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | sd_path = args.pretrained_path | 
					
						
						|  | unet = get_models(args, sd_path).to(device, dtype=torch.float16) | 
					
						
						|  | state_dict = find_model("./pretrained_models/lavie_base.pt") | 
					
						
						|  | unet.load_state_dict(state_dict) | 
					
						
						|  | vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device) | 
					
						
						|  | tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") | 
					
						
						|  | text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) | 
					
						
						|  | unet.eval() | 
					
						
						|  | vae.eval() | 
					
						
						|  | text_encoder_one.eval() | 
					
						
						|  |  | 
					
						
						|  | def infer(prompt, seed_inp, ddim_steps,cfg, infer_type): | 
					
						
						|  | if seed_inp!=-1: | 
					
						
						|  | setup_seed(seed_inp) | 
					
						
						|  | else: | 
					
						
						|  | seed_inp = random.choice(range(10000000)) | 
					
						
						|  | setup_seed(seed_inp) | 
					
						
						|  | if infer_type == 'ddim': | 
					
						
						|  | scheduler = DDIMScheduler.from_pretrained(sd_path, | 
					
						
						|  | subfolder="scheduler", | 
					
						
						|  | beta_start=args.beta_start, | 
					
						
						|  | beta_end=args.beta_end, | 
					
						
						|  | beta_schedule=args.beta_schedule) | 
					
						
						|  | elif infer_type == 'eulerdiscrete': | 
					
						
						|  | scheduler = EulerDiscreteScheduler.from_pretrained(sd_path, | 
					
						
						|  | subfolder="scheduler", | 
					
						
						|  | beta_start=args.beta_start, | 
					
						
						|  | beta_end=args.beta_end, | 
					
						
						|  | beta_schedule=args.beta_schedule) | 
					
						
						|  | elif infer_type == 'ddpm': | 
					
						
						|  | scheduler = DDPMScheduler.from_pretrained(sd_path, | 
					
						
						|  | subfolder="scheduler", | 
					
						
						|  | beta_start=args.beta_start, | 
					
						
						|  | beta_end=args.beta_end, | 
					
						
						|  | beta_schedule=args.beta_schedule) | 
					
						
						|  | model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet) | 
					
						
						|  | model.to(device) | 
					
						
						|  | if device == "cuda": | 
					
						
						|  | model.enable_xformers_memory_efficient_attention() | 
					
						
						|  | videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video | 
					
						
						|  | if not os.path.exists(args.output_folder): | 
					
						
						|  | os.mkdir(args.output_folder) | 
					
						
						|  | torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | title = """ | 
					
						
						|  | <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | 
					
						
						|  | <div | 
					
						
						|  | style=" | 
					
						
						|  | display: inline-flex; | 
					
						
						|  | align-items: center; | 
					
						
						|  | gap: 0.8rem; | 
					
						
						|  | font-size: 1.75rem; | 
					
						
						|  | " | 
					
						
						|  | > | 
					
						
						|  | <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | 
					
						
						|  | Intern·Vchitect (Text-to-Video) | 
					
						
						|  | </h1> | 
					
						
						|  | </div> | 
					
						
						|  | <p style="margin-bottom: 10px; font-size: 94%"> | 
					
						
						|  | Apply Intern·Vchitect to generate a video | 
					
						
						|  | </p> | 
					
						
						|  | </div> | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(css='style.css') as demo: | 
					
						
						|  | gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>") | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """<div style="text-align:center"> | 
					
						
						|  | [<a href="https://arxiv.org/abs/2309.15103">Arxiv Report</a>] | [<a href="https://vchitect.github.io/LaVie-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/LaVie">Github</a>]</div> | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Row(elem_id="col-container"): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  |  | 
					
						
						|  | prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) | 
					
						
						|  | infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim') | 
					
						
						|  | ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) | 
					
						
						|  | seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) | 
					
						
						|  | cfg = gr.Number(label="guidance_scale",value=7.5) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | submit_btn = gr.Button("Generate video") | 
					
						
						|  | video_out = gr.Video(label="Video result", elem_id="video-output") | 
					
						
						|  |  | 
					
						
						|  | inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type] | 
					
						
						|  | outputs = [video_out] | 
					
						
						|  |  | 
					
						
						|  | ex = gr.Examples( | 
					
						
						|  | examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'], | 
					
						
						|  | ['a cute teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'], | 
					
						
						|  | ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'], | 
					
						
						|  | ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'], | 
					
						
						|  | ['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'], | 
					
						
						|  | ['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'], | 
					
						
						|  | ['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'], | 
					
						
						|  | ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'], | 
					
						
						|  | ['jungle river at sunset, ultra quality',400,50,7,'ddim'], | 
					
						
						|  | ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'], | 
					
						
						|  | ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'], | 
					
						
						|  | ['a confused grizzly bear in calculus class',1000,50,7,'ddim']], | 
					
						
						|  | fn = infer, | 
					
						
						|  | inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type], | 
					
						
						|  | outputs=[video_out], | 
					
						
						|  | cache_examples=True, | 
					
						
						|  | ) | 
					
						
						|  | ex.dataset.headers = [""] | 
					
						
						|  |  | 
					
						
						|  | submit_btn.click(infer, inputs, outputs) | 
					
						
						|  |  | 
					
						
						|  | demo.queue(max_size=12, api_open=False).launch(show_api=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |