Commit
·
941f600
1
Parent(s):
db31449
Added app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from openvoice import se_extractor
|
| 5 |
+
from openvoice.api import ToneColorConverter
|
| 6 |
+
import whisper
|
| 7 |
+
from moviepy.editor import VideoFileClip
|
| 8 |
+
from pydub import AudioSegment
|
| 9 |
+
from df.enhance import enhance, init_df, load_audio, save_audio
|
| 10 |
+
import translators as ts
|
| 11 |
+
from melo.api import TTS
|
| 12 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
+
import ffmpeg
|
| 14 |
+
|
| 15 |
+
def process_video(video_file, language_choice):
|
| 16 |
+
if video_file == None or language_choice == None:
|
| 17 |
+
return None
|
| 18 |
+
|
| 19 |
+
# Initialize paths and devices
|
| 20 |
+
ckpt_converter = 'checkpoints_v2/converter'
|
| 21 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
output_dir = 'outputs_v2'
|
| 23 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
|
| 26 |
+
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
| 27 |
+
|
| 28 |
+
# Process the reference video
|
| 29 |
+
reference_video = VideoFileClip(video_file)
|
| 30 |
+
reference_audio = os.path.join(output_dir, "reference_audio.wav")
|
| 31 |
+
reference_video.audio.write_audiofile(reference_audio)
|
| 32 |
+
audio = AudioSegment.from_file(reference_audio)
|
| 33 |
+
resampled_audio = audio.set_frame_rate(48000)
|
| 34 |
+
resampled_audio.export(reference_audio, format="wav")
|
| 35 |
+
|
| 36 |
+
# Enhance the audio
|
| 37 |
+
model, df_state, _ = init_df()
|
| 38 |
+
audio, _ = load_audio(reference_audio, sr=df_state.sr())
|
| 39 |
+
enhanced = enhance(model, df_state, audio)
|
| 40 |
+
save_audio(reference_audio, enhanced, df_state.sr())
|
| 41 |
+
reference_speaker = reference_audio # This is the voice you want to clone
|
| 42 |
+
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
|
| 43 |
+
|
| 44 |
+
src_path = os.path.join(output_dir, "tmp.wav")
|
| 45 |
+
|
| 46 |
+
# Speed is adjustable
|
| 47 |
+
speed = 1.0
|
| 48 |
+
|
| 49 |
+
# Transcribe the original audio with timestamps
|
| 50 |
+
sttmodel = whisper.load_model("base")
|
| 51 |
+
sttresult = sttmodel.transcribe(reference_speaker, verbose=True)
|
| 52 |
+
|
| 53 |
+
# Print the original transcription
|
| 54 |
+
print(sttresult["text"])
|
| 55 |
+
print(sttresult["language"])
|
| 56 |
+
|
| 57 |
+
# Get the segments with start and end times
|
| 58 |
+
segments = sttresult['segments']
|
| 59 |
+
|
| 60 |
+
# Choose the target language for translation
|
| 61 |
+
language = 'EN_NEWEST'
|
| 62 |
+
match language_choice:
|
| 63 |
+
case 'en':
|
| 64 |
+
language = 'EN_NEWEST'
|
| 65 |
+
case 'es':
|
| 66 |
+
language = 'ES'
|
| 67 |
+
case 'fr':
|
| 68 |
+
language = 'FR'
|
| 69 |
+
case 'zh':
|
| 70 |
+
language = 'ZH'
|
| 71 |
+
case 'ja':
|
| 72 |
+
language = 'JP'
|
| 73 |
+
case 'ko':
|
| 74 |
+
language = 'KR'
|
| 75 |
+
case _:
|
| 76 |
+
language = 'EN_NEWEST'
|
| 77 |
+
|
| 78 |
+
# Translate the transcription segment by segment
|
| 79 |
+
def translate_segment(segment):
|
| 80 |
+
return segment["start"], segment["end"], ts.translate_text(query_text=segment["text"], translator="google", to_language=language_choice)
|
| 81 |
+
|
| 82 |
+
# Batch translation to reduce memory load
|
| 83 |
+
batch_size = 2
|
| 84 |
+
translation_segments = []
|
| 85 |
+
for i in range(0, len(segments), batch_size):
|
| 86 |
+
batch = segments[i:i + batch_size]
|
| 87 |
+
with ThreadPoolExecutor(max_workers=5) as executor:
|
| 88 |
+
batch_translations = list(executor.map(translate_segment, batch))
|
| 89 |
+
translation_segments.extend(batch_translations)
|
| 90 |
+
|
| 91 |
+
# Generate the translated audio for each segment
|
| 92 |
+
model = TTS(language=language, device=device)
|
| 93 |
+
speaker_ids = model.hps.data.spk2id
|
| 94 |
+
|
| 95 |
+
def generate_segment_audio(segment, speaker_id):
|
| 96 |
+
start, end, translated_text = segment
|
| 97 |
+
segment_path = os.path.join(output_dir, f'segment_{start}_{end}.wav')
|
| 98 |
+
model.tts_to_file(translated_text, speaker_id, segment_path, speed=speed)
|
| 99 |
+
return segment_path, start, end, translated_text
|
| 100 |
+
|
| 101 |
+
for speaker_key in speaker_ids.keys():
|
| 102 |
+
speaker_id = speaker_ids[speaker_key]
|
| 103 |
+
speaker_key = speaker_key.lower().replace('_', '-')
|
| 104 |
+
|
| 105 |
+
source_se = torch.load(f'checkpoints_v2/base_speakers/ses/{speaker_key}.pth', map_location=device)
|
| 106 |
+
|
| 107 |
+
segment_files = []
|
| 108 |
+
subtitle_entries = []
|
| 109 |
+
for segment in translation_segments:
|
| 110 |
+
segment_file, start, end, translated_text = generate_segment_audio(segment, speaker_id)
|
| 111 |
+
|
| 112 |
+
# Run the tone color converter
|
| 113 |
+
encode_message = "@MyShell"
|
| 114 |
+
tone_color_converter.convert(
|
| 115 |
+
audio_src_path=segment_file,
|
| 116 |
+
src_se=source_se,
|
| 117 |
+
tgt_se=target_se,
|
| 118 |
+
output_path=segment_file,
|
| 119 |
+
message=encode_message)
|
| 120 |
+
|
| 121 |
+
segment_files.append((segment_file, start, end, translated_text))
|
| 122 |
+
|
| 123 |
+
# Combine the audio segments
|
| 124 |
+
combined_audio = AudioSegment.empty()
|
| 125 |
+
video_segments = []
|
| 126 |
+
previous_end = 0
|
| 127 |
+
subtitle_counter = 1
|
| 128 |
+
for segment_file, start, end, translated_text in segment_files:
|
| 129 |
+
segment_audio = AudioSegment.from_file(segment_file)
|
| 130 |
+
combined_audio += segment_audio
|
| 131 |
+
|
| 132 |
+
# Calculate the duration of the audio segment
|
| 133 |
+
audio_duration = len(segment_audio) / 1000.0
|
| 134 |
+
|
| 135 |
+
# Add the subtitle entry for this segment
|
| 136 |
+
subtitle_entries.append((subtitle_counter, previous_end, previous_end + audio_duration, translated_text))
|
| 137 |
+
subtitle_counter += 1
|
| 138 |
+
|
| 139 |
+
# Get the corresponding video segment and adjust its speed to match the audio duration
|
| 140 |
+
video_segment = (
|
| 141 |
+
ffmpeg
|
| 142 |
+
.input(reference_video.filename, ss=start, to=end)
|
| 143 |
+
.filter('setpts', f'PTS / {(end - start) / audio_duration}')
|
| 144 |
+
)
|
| 145 |
+
video_segments.append((video_segment, ffmpeg.input(segment_file)))
|
| 146 |
+
previous_end += audio_duration
|
| 147 |
+
|
| 148 |
+
save_path = os.path.join(output_dir, f'output_v2_{speaker_key}.wav')
|
| 149 |
+
combined_audio.export(save_path, format="wav")
|
| 150 |
+
|
| 151 |
+
# Combine video and audio segments using ffmpeg
|
| 152 |
+
video_and_audio_files = [item for sublist in video_segments for item in sublist]
|
| 153 |
+
joined = (
|
| 154 |
+
ffmpeg
|
| 155 |
+
.concat(*video_and_audio_files, v=1, a=1)
|
| 156 |
+
.node
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
final_video_path = os.path.join(output_dir, f'final_video_{speaker_key}.mp4')
|
| 160 |
+
try:
|
| 161 |
+
(
|
| 162 |
+
ffmpeg
|
| 163 |
+
.output(joined[0], joined[1], final_video_path, vcodec='libx264', acodec='aac')
|
| 164 |
+
.run(overwrite_output=True)
|
| 165 |
+
)
|
| 166 |
+
except ffmpeg.Error as e:
|
| 167 |
+
print('ffmpeg error:', e)
|
| 168 |
+
print(e.stderr.decode('utf-8'))
|
| 169 |
+
|
| 170 |
+
print(f"Final video without subtitles saved to: {final_video_path}")
|
| 171 |
+
|
| 172 |
+
# Generate subtitles file in SRT format
|
| 173 |
+
srt_path = os.path.join(output_dir, 'subtitles.srt')
|
| 174 |
+
with open(srt_path, 'w', encoding='utf-8') as srt_file:
|
| 175 |
+
for entry in subtitle_entries:
|
| 176 |
+
index, start, end, text = entry
|
| 177 |
+
start_hours, start_minutes = divmod(int(start), 3600)
|
| 178 |
+
start_minutes, start_seconds = divmod(start_minutes, 60)
|
| 179 |
+
start_milliseconds = int((start * 1000) % 1000)
|
| 180 |
+
|
| 181 |
+
end_hours, end_minutes = divmod(int(end), 3600)
|
| 182 |
+
end_minutes, end_seconds = divmod(end_minutes, 60)
|
| 183 |
+
end_milliseconds = int((end * 1000) % 1000)
|
| 184 |
+
|
| 185 |
+
srt_file.write(f"{index}\n")
|
| 186 |
+
srt_file.write(f"{start_hours:02}:{start_minutes:02}:{start_seconds:02},{start_milliseconds:03} --> "
|
| 187 |
+
f"{end_hours:02}:{end_minutes:02}:{end_seconds:02},{end_milliseconds:03}\n")
|
| 188 |
+
srt_file.write(f"{text}\n\n")
|
| 189 |
+
|
| 190 |
+
# Add subtitles to the video
|
| 191 |
+
final_video_with_subs_path = os.path.join(output_dir, f'final_video_with_subs_{speaker_key}.mp4')
|
| 192 |
+
try:
|
| 193 |
+
(
|
| 194 |
+
ffmpeg
|
| 195 |
+
.input(final_video_path)
|
| 196 |
+
.output(final_video_with_subs_path, vf=f"subtitles={srt_path}")
|
| 197 |
+
.run(overwrite_output=True)
|
| 198 |
+
)
|
| 199 |
+
except ffmpeg.Error as e:
|
| 200 |
+
print('ffmpeg error:', e)
|
| 201 |
+
print(e.stderr.decode('utf-8'))
|
| 202 |
+
|
| 203 |
+
print(f"Final video with subtitles saved to: {final_video_with_subs_path}")
|
| 204 |
+
|
| 205 |
+
return final_video_with_subs_path
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# Define Gradio interface
|
| 209 |
+
def gradio_interface(video_file, language_choice):
|
| 210 |
+
return process_video(video_file, language_choice)
|
| 211 |
+
|
| 212 |
+
language_choices = ts.get_languages("google")["en"]
|
| 213 |
+
|
| 214 |
+
gr.Interface(
|
| 215 |
+
fn=gradio_interface,
|
| 216 |
+
inputs=[
|
| 217 |
+
gr.Video(label="Upload Video"),
|
| 218 |
+
gr.Dropdown(choices=language_choices, label="Choose Language for Translation")
|
| 219 |
+
],
|
| 220 |
+
outputs=gr.Video(label="Translated Video"),
|
| 221 |
+
title="Video Translation and Voice Cloning",
|
| 222 |
+
description="Upload a video, choose a language to translate the audio, and download the processed video with translated audio."
|
| 223 |
+
).launch()
|