Spaces:
Paused
Paused
| import torch | |
| import transformers | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from threading import Thread | |
| from transformers import TextIteratorStreamer | |
| import spaces | |
| model_name = "numfa/numfa_v2-3b" | |
| model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.float16, device_map="cuda") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens = True) | |
| def generate_text(prompt, max_length, top_p, top_k): | |
| inputs = tokenizer([prompt], return_tensors="pt").to("cuda") | |
| generate_kwargs = dict( | |
| inputs, | |
| max_length=int(max_length),top_p=float(top_p), do_sample=True, top_k=int(top_k), streamer=streamer | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| generated_text=[] | |
| for text in streamer: | |
| generated_text.append(text) | |
| yield "".join(generated_text) | |
| description = """ | |
| # Deploy your first ML app using Gradio | |
| """ | |
| inputs = [ | |
| gr.Textbox(label="Prompt text"), | |
| gr.Textbox(label="max-lenth generation", value=100), | |
| gr.Slider(0.0, 1.0, label="top-p value", value=0.95), | |
| gr.Textbox(label="top-k", value=50,), | |
| ] | |
| outputs = [gr.Textbox(label="Generated Text")] | |
| demo = gr.Interface(fn=generate_text, inputs=inputs, outputs=outputs, allow_flagging=False, description=description) | |
| demo.queue(max_size=20).launch() |