DreamOmni2-Gen / utils /vprocess.py
wcy1122's picture
initial commi
26a63c0
raw
history blame
22 kB
import base64
import copy
import logging
import math
import os
import sys
import time
import warnings
from functools import lru_cache
from io import BytesIO
from typing import Optional, Union, Tuple, List, Any, Dict
from concurrent.futures import ThreadPoolExecutor
import requests
import torch
import torchvision
from packaging import version
from PIL import Image
import numpy as np
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode
PREFERRED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def resizeinput(img):
multiple_of = 16
image_height, image_width = img.height, img.width
aspect_ratio = image_width / image_height
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
image_width = image_width // multiple_of * multiple_of
image_height = image_height // multiple_of * multiple_of
img = img.resize((image_width, image_height), Image.LANCZOS)
return img
MAX_RATIO = 200
SPATIAL_MERGE_SIZE = 2
IMAGE_MIN_TOKEN_NUM = 4
IMAGE_MAX_TOKEN_NUM = 16384
VIDEO_MIN_TOKEN_NUM = 128
VIDEO_MAX_TOKEN_NUM = 768
FPS = 2.0
FRAME_FACTOR = 2
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 768
MAX_NUM_WORKERS_FETCH_VIDEO = 8
MODEL_SEQ_LEN = int(float(os.environ.get('MODEL_SEQ_LEN', 128000)))
logger = logging.getLogger(__name__)
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(height: int, width: int, factor: int, min_pixels: Optional[int] = None, max_pixels: Optional[int] = None) -> Tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
max_pixels = max_pixels if max_pixels is not None else (IMAGE_MAX_TOKEN_NUM * factor ** 2)
min_pixels = min_pixels if min_pixels is not None else (IMAGE_MIN_TOKEN_NUM * factor ** 2)
assert max_pixels >= min_pixels, "The max_pixels of image must be greater than or equal to min_pixels."
if max(height, width) / min(height, width) > MAX_RATIO:
raise ValueError(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def to_rgb(pil_image: Image.Image) -> Image.Image:
if pil_image.mode == 'RGBA':
white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
return white_background
else:
return pil_image.convert("RGB")
def fetch_image(ele: Dict[str, Union[str, Image.Image]], image_patch_size: int = 14) -> Image.Image:
if "image" in ele:
image = ele["image"]
else:
image = ele["image_url"]
image_obj = None
patch_factor = int(image_patch_size * SPATIAL_MERGE_SIZE)
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
with requests.get(image, stream=True) as response:
response.raise_for_status()
with BytesIO(response.content) as bio:
image_obj = copy.deepcopy(Image.open(bio))
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
with BytesIO(data) as bio:
image_obj = copy.deepcopy(Image.open(bio))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = to_rgb(image_obj)
## resize
image = resizeinput(image)
# if "resized_height" in ele and "resized_width" in ele:
# resized_height, resized_width = smart_resize(
# ele["resized_height"],
# ele["resized_width"],
# factor=patch_factor,
# )
# else:
# width, height = image.size
# min_pixels = ele.get("min_pixels", IMAGE_MIN_TOKEN_NUM * patch_factor ** 2)
# max_pixels = ele.get("max_pixels", IMAGE_MAX_TOKEN_NUM * patch_factor ** 2)
# resized_height, resized_width = smart_resize(
# height,
# width,
# factor=patch_factor,
# min_pixels=min_pixels,
# max_pixels=max_pixels,
# )
# print(f"resized_height: {resized_height}, resized_width: {resized_width}")
# image = image.resize((resized_width, resized_height))
return image
def smart_nframes(
ele: Dict[str, Any],
total_frames: int,
video_fps: Union[int, float],
) -> int:
"""calculate the number of frames for video used for model inputs.
Args:
ele (dict): a dict contains the configuration of video.
support either `fps` or `nframes`:
- nframes: the number of frames to extract for model inputs.
- fps: the fps to extract frames for model inputs.
- min_frames: the minimum number of frames of the video, only used when fps is provided.
- max_frames: the maximum number of frames of the video, only used when fps is provided.
total_frames (int): the original total number of frames of the video.
video_fps (int | float): the original fps of the video.
Raises:
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
Returns:
int: the number of frames for video used for model inputs.
"""
assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
if "nframes" in ele:
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
else:
fps = ele.get("fps", FPS)
min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR)
nframes = total_frames / video_fps * fps
if nframes > total_frames:
logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]")
nframes = min(min(max(nframes, min_frames), max_frames), total_frames)
nframes = floor_by_factor(nframes, FRAME_FACTOR)
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
return nframes
def _read_video_torchvision(
ele: Dict[str, Any],
) -> Tuple[torch.Tensor, float]:
"""read video using torchvision.io.read_video
Args:
ele (dict): a dict contains the configuration of video.
support keys:
- video: the path of video. support "file://", "http://", "https://" and local path.
- video_start: the start time of video.
- video_end: the end time of video.
Returns:
torch.Tensor: the video tensor with shape (T, C, H, W).
"""
video_path = ele["video"]
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
if "http://" in video_path or "https://" in video_path:
warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
if "file://" in video_path:
video_path = video_path[7:]
st = time.time()
video, audio, info = io.read_video(
video_path,
start_pts=ele.get("video_start", 0.0),
end_pts=ele.get("video_end", None),
pts_unit="sec",
output_format="TCHW",
)
total_frames, video_fps = video.size(0), info["video_fps"]
logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
idx = torch.linspace(0, total_frames - 1, nframes).round().long()
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
video = video[idx]
video_metadata = dict(
fps=video_fps,
frames_indices=idx,
total_num_frames=total_frames,
video_backend="torchvision",
)
return video, video_metadata, sample_fps
def is_decord_available() -> bool:
import importlib.util
return importlib.util.find_spec("decord") is not None
def calculate_video_frame_range(
ele: Dict[str, Any],
total_frames: int,
video_fps: float,
) -> Tuple[int, int, int]:
"""
Calculate the start and end frame indices based on the given time range.
Args:
ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds).
total_frames (int): Total number of frames in the video.
video_fps (float): Frames per second of the video.
Returns:
tuple: A tuple containing (start_frame, end_frame, frame_count).
Raises:
ValueError: If input parameters are invalid or the time range is inconsistent.
"""
# Validate essential parameters
if video_fps <= 0:
raise ValueError("video_fps must be a positive number")
if total_frames <= 0:
raise ValueError("total_frames must be a positive integer")
# Get start and end time in seconds
video_start = ele.get("video_start", None)
video_end = ele.get("video_end", None)
if video_start is None and video_end is None:
return 0, total_frames - 1, total_frames
max_duration = total_frames / video_fps
# Process start frame
if video_start is not None:
video_start_clamped = max(0.0, min(video_start, max_duration))
start_frame = math.ceil(video_start_clamped * video_fps)
else:
start_frame = 0
# Process end frame
if video_end is not None:
video_end_clamped = max(0.0, min(video_end, max_duration))
end_frame = math.floor(video_end_clamped * video_fps)
end_frame = min(end_frame, total_frames - 1)
else:
end_frame = total_frames - 1
# Validate frame order
if start_frame >= end_frame:
raise ValueError(
f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) "
f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). "
f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)"
)
logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}")
return start_frame, end_frame, end_frame - start_frame + 1
def _read_video_decord(
ele: Dict[str, Any],
) -> Tuple[torch.Tensor, float]:
"""read video using decord.VideoReader
Args:
ele (dict): a dict contains the configuration of video.
support keys:
- video: the path of video. support "file://", "http://", "https://" and local path.
- video_start: the start time of video.
- video_end: the end time of video.
Returns:
torch.Tensor: the video tensor with shape (T, C, H, W).
"""
import decord
video_path = ele["video"]
st = time.time()
vr = decord.VideoReader(video_path)
total_frames, video_fps = len(vr), vr.get_avg_fps()
start_frame, end_frame, total_frames = calculate_video_frame_range(
ele,
total_frames,
video_fps,
)
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
video = vr.get_batch(idx).asnumpy()
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
video_metadata = dict(
fps=video_fps,
frames_indices=idx,
total_num_frames=total_frames,
video_backend="decord",
)
return video, video_metadata, sample_fps
def is_torchcodec_available() -> bool:
import importlib.util
return importlib.util.find_spec("torchcodec") is not None
def _read_video_torchcodec(
ele: Dict[str, Any],
) -> Tuple[torch.Tensor, float]:
"""read video using torchcodec.decoders.VideoDecoder
Args:
ele (dict): a dict contains the configuration of video.
support keys:
- video: the path of video. support "file://", "http://", "https://" and local path.
- video_start: the start time of video.
- video_end: the end time of video.
Returns:
torch.Tensor: the video tensor with shape (T, C, H, W).
"""
from torchcodec.decoders import VideoDecoder
TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8))
logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}")
video_path = ele["video"]
st = time.time()
decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS)
video_fps = decoder.metadata.average_fps
total_frames = decoder.metadata.num_frames
start_frame, end_frame, total_frames = calculate_video_frame_range(
ele,
total_frames,
video_fps,
)
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
video = decoder.get_frames_at(indices=idx).data
logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
video_metadata = dict(
fps=video_fps,
frames_indices=idx,
total_num_frames=total_frames,
video_backend="torchcodec",
)
return video, video_metadata, sample_fps
VIDEO_READER_BACKENDS = {
"decord": _read_video_decord,
"torchvision": _read_video_torchvision,
"torchcodec": _read_video_torchcodec,
}
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
@lru_cache(maxsize=1)
def get_video_reader_backend() -> str:
if FORCE_QWENVL_VIDEO_READER is not None:
video_reader_backend = FORCE_QWENVL_VIDEO_READER
elif is_torchcodec_available():
video_reader_backend = "torchcodec"
elif is_decord_available():
video_reader_backend = "decord"
else:
video_reader_backend = "torchvision"
print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr)
return video_reader_backend
def fetch_video(ele: Dict[str, Any], image_patch_size: int = 14, return_video_sample_fps: bool = False,
return_video_metadata: bool = False) -> Union[torch.Tensor, List[Image.Image]]:
image_factor = image_patch_size * SPATIAL_MERGE_SIZE
VIDEO_FRAME_MIN_PIXELS = VIDEO_MIN_TOKEN_NUM * image_factor * image_factor
VIDEO_FRAME_MAX_PIXELS = VIDEO_MAX_TOKEN_NUM * image_factor * image_factor
if isinstance(ele["video"], str):
video_reader_backend = get_video_reader_backend()
try:
video, video_metadata, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele)
except Exception as e:
logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}")
video, video_metadata, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele)
else:
# The input is a list of frames
assert isinstance(ele["video"], (list, tuple))
process_info = ele.copy()
process_info.pop("type", None)
process_info.pop("video", None)
# use ThreadPoolExecutor to parallel process frames
max_workers = min(MAX_NUM_WORKERS_FETCH_VIDEO, len(ele["video"]))
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(fetch_image, {"image": video_element, **process_info}, image_factor)
for video_element in ele["video"]
]
image_list = [future.result() for future in futures]
nframes = ceil_by_factor(len(image_list), FRAME_FACTOR)
if len(image_list) < nframes:
image_list.extend([image_list[-1]] * (nframes - len(image_list)))
sample_fps = ele.get("sample_fps", 2.0)
video = torch.stack([
torch.from_numpy(np.array(image).transpose(2, 0, 1))
for image in image_list
])
# fake video metadata
raw_fps = process_info.pop("raw_fps", sample_fps)
video_metadata = dict(
fps=raw_fps,
frames_indices=[i for i in range(len(video))],
total_num_frames=(nframes / sample_fps) * raw_fps,
)
nframes, _, height, width = video.shape
min_pixels = ele.get("min_pixels", VIDEO_FRAME_MIN_PIXELS)
total_pixels = ele.get("total_pixels", MODEL_SEQ_LEN * image_factor * image_factor * 0.9)
max_pixels = max(min(VIDEO_FRAME_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
max_pixels_supposed = ele.get("max_pixels", max_pixels)
if max_pixels_supposed > max_pixels:
logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].")
max_pixels = min(max_pixels_supposed, max_pixels)
if "resized_height" in ele and "resized_width" in ele:
resized_height, resized_width = smart_resize(
ele["resized_height"],
ele["resized_width"],
factor=image_factor,
)
else:
resized_height, resized_width = smart_resize(
height,
width,
factor=image_factor,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
video = transforms.functional.resize(
video,
[resized_height, resized_width],
interpolation=InterpolationMode.BICUBIC,
antialias=True,
).float()
final_video = (video, video_metadata) if return_video_metadata else video
if return_video_sample_fps:
return final_video, sample_fps
return final_video
def extract_vision_info(conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]) -> List[Dict[str, Any]]:
vision_infos = []
if isinstance(conversations[0], dict):
conversations = [conversations]
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if (
"image" in ele
or "image_url" in ele
or "video" in ele
or ele.get("type", "text") in ("image", "image_url", "video")
):
vision_infos.append(ele)
return vision_infos
def process_vision_info(
conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]],
return_video_kwargs: bool = False,
return_video_metadata: bool = False,
image_patch_size: int = 14,
) -> Tuple[Optional[List[Image.Image]], Optional[List[Union[torch.Tensor, List[Image.Image]]]], Optional[Dict[str, Any]]]:
vision_infos = extract_vision_info(conversations)
## Read images or videos
image_inputs = []
video_inputs = []
video_sample_fps_list = []
for vision_info in vision_infos:
if "image" in vision_info or "image_url" in vision_info:
image_inputs.append(fetch_image(vision_info, image_patch_size=image_patch_size))
elif "video" in vision_info:
video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True,
image_patch_size=image_patch_size, return_video_metadata=return_video_metadata)
video_sample_fps_list.append(video_sample_fps)
video_inputs.append(video_input)
else:
raise ValueError("image, image_url or video should in content.")
if len(image_inputs) == 0:
image_inputs = None
if len(video_inputs) == 0:
video_inputs = None
video_kwargs = {'do_sample_frames': False}
if not return_video_metadata: # BC for qwen2.5vl
video_kwargs.update({'fps': video_sample_fps_list})
if return_video_kwargs:
return image_inputs, video_inputs, video_kwargs
return image_inputs, video_inputs