Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,218 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
- **Parameters**:
|
| 23 |
-
- `category` (optional): Filter datasets by a specific category.
|
| 24 |
-
- `tags` (optional): Filter datasets by tags (comma-separated).
|
| 25 |
-
- `limit` (optional): Maximum number of datasets to return (default: 10).
|
| 26 |
-
|
| 27 |
-
- **Example Request**:
|
| 28 |
-
```bash
|
| 29 |
-
curl -X GET "https://api.crustdata.com/datasets?category=finance&tags=economy,stocks&limit=5"
|
| 30 |
-
```
|
| 31 |
-
|
| 32 |
-
- **Example Response**:
|
| 33 |
-
```json
|
| 34 |
-
{
|
| 35 |
-
"datasets": [
|
| 36 |
-
{
|
| 37 |
-
"id": "12345",
|
| 38 |
-
"name": "Global Finance Dataset",
|
| 39 |
-
"category": "finance",
|
| 40 |
-
"tags": ["economy", "stocks"]
|
| 41 |
-
},
|
| 42 |
-
...
|
| 43 |
-
]
|
| 44 |
-
}
|
| 45 |
-
```
|
| 46 |
-
|
| 47 |
-
### 2. **GET /datasets/{id}**
|
| 48 |
-
- **Description**: Retrieves detailed information about a specific dataset.
|
| 49 |
-
- **Parameters**:
|
| 50 |
-
- `id` (required): The unique identifier of the dataset.
|
| 51 |
-
|
| 52 |
-
- **Example Request**:
|
| 53 |
-
```bash
|
| 54 |
-
curl -X GET "https://api.crustdata.com/datasets/12345"
|
| 55 |
-
```
|
| 56 |
-
|
| 57 |
-
- **Example Response**:
|
| 58 |
-
```json
|
| 59 |
-
{
|
| 60 |
-
"id": "12345",
|
| 61 |
-
"name": "Global Finance Dataset",
|
| 62 |
-
"description": "A comprehensive dataset on global financial markets.",
|
| 63 |
-
"category": "finance",
|
| 64 |
-
"tags": ["economy", "stocks"],
|
| 65 |
-
"source": "World Bank"
|
| 66 |
-
}
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
---
|
| 70 |
-
|
| 71 |
-
# Crustdata Discovery and Enrichment API
|
| 72 |
-
|
| 73 |
-
## Description
|
| 74 |
-
The Crustdata Discovery and Enrichment API allows users to enrich their datasets by adding metadata, geolocation information, and other relevant attributes.
|
| 75 |
-
|
| 76 |
-
## Key Endpoints
|
| 77 |
-
|
| 78 |
-
### 1. **POST /enrich**
|
| 79 |
-
- **Description**: Enriches input data with additional metadata based on the specified enrichment type.
|
| 80 |
-
- **Parameters**:
|
| 81 |
-
- `input_data` (required): A list of data entries to be enriched.
|
| 82 |
-
- `enrichment_type` (required): The type of enrichment to apply. Supported types:
|
| 83 |
-
- `geolocation`
|
| 84 |
-
- `demographics`
|
| 85 |
-
|
| 86 |
-
- **Example Request**:
|
| 87 |
-
```bash
|
| 88 |
-
curl -X POST "https://api.crustdata.com/enrich" \
|
| 89 |
-
-H "Content-Type: application/json" \
|
| 90 |
-
-d '{
|
| 91 |
-
"input_data": [{"address": "123 Main St, Springfield"}],
|
| 92 |
-
"enrichment_type": "geolocation"
|
| 93 |
-
}'
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
- **Example Response**:
|
| 97 |
-
```json
|
| 98 |
-
{
|
| 99 |
-
"enriched_data": [
|
| 100 |
-
{
|
| 101 |
-
"address": "123 Main St, Springfield",
|
| 102 |
-
"latitude": 37.12345,
|
| 103 |
-
"longitude": -93.12345
|
| 104 |
-
}
|
| 105 |
-
]
|
| 106 |
-
}
|
| 107 |
-
```
|
| 108 |
-
|
| 109 |
-
### 2. **POST /search**
|
| 110 |
-
- **Description**: Searches for relevant metadata or datasets based on user-provided criteria.
|
| 111 |
-
- **Parameters**:
|
| 112 |
-
- `query` (required): The search term or query string.
|
| 113 |
-
- `filters` (optional): Additional filters to narrow down the search results.
|
| 114 |
-
|
| 115 |
-
- **Example Request**:
|
| 116 |
-
```bash
|
| 117 |
-
curl -X POST "https://api.crustdata.com/search" \
|
| 118 |
-
-H "Content-Type: application/json" \
|
| 119 |
-
-d '{
|
| 120 |
-
"query": "energy consumption",
|
| 121 |
-
"filters": {"category": "energy"}
|
| 122 |
-
}'
|
| 123 |
-
```
|
| 124 |
-
|
| 125 |
-
- **Example Response**:
|
| 126 |
-
```json
|
| 127 |
-
{
|
| 128 |
-
"results": [
|
| 129 |
-
{
|
| 130 |
-
"id": "67890",
|
| 131 |
-
"name": "Energy Consumption Dataset",
|
| 132 |
-
"category": "energy",
|
| 133 |
-
"tags": ["consumption", "renewables"]
|
| 134 |
-
}
|
| 135 |
-
]
|
| 136 |
-
}
|
| 137 |
-
```
|
| 138 |
-
|
| 139 |
-
---
|
| 140 |
-
|
| 141 |
-
# General Notes
|
| 142 |
-
- All endpoints require authentication using an API key.
|
| 143 |
-
- API requests must include the `Authorization` header:
|
| 144 |
-
```plaintext
|
| 145 |
-
Authorization: Bearer YOUR_API_KEY
|
| 146 |
-
```
|
| 147 |
-
- Response format: JSON
|
| 148 |
-
- Base URL: `https://api.crustdata.com`
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
# Split the documentation into smaller chunks
|
| 152 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 153 |
-
doc_chunks = text_splitter.create_documents([docs])
|
| 154 |
-
|
| 155 |
-
# Create embeddings and initialize FAISS vector store
|
| 156 |
-
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
| 157 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 158 |
-
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def retrieve_context(query):
|
| 162 |
-
"""Retrieve the most relevant context from the knowledge base."""
|
| 163 |
-
results = docsearch.similarity_search(query, k=2) # Retrieve top 2 most similar chunks
|
| 164 |
-
context = "\n".join([res.page_content for res in results])
|
| 165 |
-
return context
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
def respond(
|
| 169 |
-
message,
|
| 170 |
-
history: list[tuple[str, str]],
|
| 171 |
-
system_message,
|
| 172 |
-
max_tokens,
|
| 173 |
-
temperature,
|
| 174 |
-
top_p,
|
| 175 |
-
):
|
| 176 |
-
"""Generate a response using the Hugging Face Inference API."""
|
| 177 |
-
# Retrieve relevant context from the knowledge base
|
| 178 |
-
context = retrieve_context(message)
|
| 179 |
-
prompt = f"{system_message}\n\nContext:\n{context}\n\nUser: {message}\nAssistant:"
|
| 180 |
-
|
| 181 |
-
messages = [{"role": "system", "content": system_message}]
|
| 182 |
-
for val in history:
|
| 183 |
-
if val[0]:
|
| 184 |
-
messages.append({"role": "user", "content": val[0]})
|
| 185 |
-
if val[1]:
|
| 186 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 187 |
-
|
| 188 |
-
messages.append({"role": "user", "content": prompt})
|
| 189 |
-
|
| 190 |
-
response = ""
|
| 191 |
-
|
| 192 |
-
for message in client.chat_completion(
|
| 193 |
-
messages,
|
| 194 |
-
max_tokens=max_tokens,
|
| 195 |
-
stream=True,
|
| 196 |
-
temperature=temperature,
|
| 197 |
-
top_p=top_p,
|
| 198 |
-
):
|
| 199 |
-
token = message.choices[0].delta.content
|
| 200 |
-
response += token
|
| 201 |
-
yield response
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
# Gradio interface
|
| 205 |
-
demo = gr.ChatInterface(
|
| 206 |
-
respond,
|
| 207 |
-
additional_inputs=[
|
| 208 |
-
gr.Textbox(value="You are a technical assistant for Crustdata APIs.", label="System message"),
|
| 209 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 210 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 211 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 212 |
-
],
|
| 213 |
-
title="Crustdata API Chatbot",
|
| 214 |
-
description="Ask any technical questions about Crustdata’s Dataset and Discovery APIs.",
|
| 215 |
)
|
| 216 |
|
| 217 |
-
|
| 218 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from diffusers import StableDiffusionPipeline
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the Ghibli LoRA model
|
| 6 |
+
model_id = "openfree/flux-chatgpt-ghibli-lora"
|
| 7 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 8 |
+
pipe.to("cpu") # Ensure you have GPU enabled
|
| 9 |
+
|
| 10 |
+
def convert_to_ghibli(image):
|
| 11 |
+
prompt = "A Ghibli-style anime scene, highly detailed, vibrant colors"
|
| 12 |
+
result = pipe(prompt, image=image).images[0]
|
| 13 |
+
return result
|
| 14 |
+
|
| 15 |
+
# Create Gradio UI
|
| 16 |
+
iface = gr.Interface(
|
| 17 |
+
fn=convert_to_ghibli,
|
| 18 |
+
inputs=gr.Image(type="pil"),
|
| 19 |
+
outputs="image",
|
| 20 |
+
title="Ghibli Image Converter",
|
| 21 |
+
description="Upload an image and convert it to a Studio Ghibli-style artwork using AI."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
+
iface.launch()
|
|
|