Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load model and tokenizer
|
| 6 |
+
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Function to compute relevance score
|
| 11 |
+
def get_relevance_score(query, paragraph):
|
| 12 |
+
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
|
| 13 |
+
with torch.no_grad():
|
| 14 |
+
scores = model(**inputs).logits.squeeze().item()
|
| 15 |
+
return round(scores, 4)
|
| 16 |
+
|
| 17 |
+
# Gradio interface
|
| 18 |
+
interface = gr.Interface(
|
| 19 |
+
fn=get_relevance_score,
|
| 20 |
+
inputs=[
|
| 21 |
+
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
| 22 |
+
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
|
| 23 |
+
],
|
| 24 |
+
outputs=gr.Number(label="Relevance Score"),
|
| 25 |
+
title="Cross-Encoder Relevance Scoring",
|
| 26 |
+
description="Enter a query and a document paragraph to get a relevance score using the MS MARCO MiniLM L-12 v2 model."
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
+
interface.launch()
|