Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
# Load model and tokenizer
|
| 6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
-
model.eval()
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
base_relevance_tensor = torch.tensor(base_relevance) # Ensure input is a tensor
|
| 14 |
-
threshold = min_threshold + (max_threshold - min_threshold) * (
|
| 15 |
-
1 / (1 + torch.exp(-k * (base_relevance_tensor - 0.5)))
|
| 16 |
-
)
|
| 17 |
-
return threshold.item() # Convert tensor back to float for use in other functions
|
| 18 |
-
|
| 19 |
-
# Function to compute relevance score and dynamically adjust threshold
|
| 20 |
-
def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
|
| 21 |
-
if not query.strip() or not paragraph.strip():
|
| 22 |
-
return "Please provide both a query and a document paragraph.", ""
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
| 27 |
with torch.no_grad():
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
if para_end_idx <= para_start_idx:
|
| 49 |
-
return round(base_relevance_score, 4), "No relevant tokens extracted."
|
| 50 |
-
|
| 51 |
-
para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
|
| 52 |
-
|
| 53 |
-
if para_attention_scores.numel() == 0:
|
| 54 |
-
return round(base_relevance_score, 4), "No relevant tokens extracted."
|
| 55 |
-
|
| 56 |
-
# Get indices of relevant tokens above dynamic threshold
|
| 57 |
-
relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()
|
| 58 |
-
|
| 59 |
-
# Reconstruct paragraph with bolded relevant tokens using HTML tags
|
| 60 |
highlighted_text = ""
|
| 61 |
-
for idx, token in enumerate(
|
| 62 |
if idx in relevant_indices:
|
| 63 |
highlighted_text += f"<b>{token}</b> "
|
| 64 |
else:
|
|
@@ -66,25 +46,25 @@ def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
|
|
| 66 |
|
| 67 |
highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
inputs=[
|
| 75 |
-
gr.Textbox(label="Query"
|
| 76 |
-
gr.Textbox(label="Document Paragraph"
|
| 77 |
-
gr.Slider(minimum=0.
|
| 78 |
],
|
| 79 |
outputs=[
|
| 80 |
gr.Textbox(label="Relevance Score"),
|
|
|
|
| 81 |
gr.HTML(label="Highlighted Document Paragraph")
|
| 82 |
-
]
|
| 83 |
-
title="Cross-Encoder Attention Highlighting",
|
| 84 |
-
description="Adjust the attention threshold weight to control token highlighting sensitivity.",
|
| 85 |
-
allow_flagging="never",
|
| 86 |
-
live=True
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 4 |
|
| 5 |
# Load model and tokenizer
|
| 6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, output_attentions=True)
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Set model to evaluation mode
|
| 11 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Function to compute relevance and highlight relevant tokens
|
| 14 |
+
def process_text(query, document, weight):
|
| 15 |
+
# Tokenize input
|
| 16 |
+
inputs = tokenizer(query, document, return_tensors="pt", truncation=True, padding=True)
|
| 17 |
+
input_ids = inputs["input_ids"]
|
| 18 |
|
| 19 |
+
# Get model outputs with attentions
|
| 20 |
with torch.no_grad():
|
| 21 |
+
outputs = model(**inputs, output_attentions=True)
|
| 22 |
+
relevance_score = torch.sigmoid(outputs.logits).item() # Convert logits to relevance score
|
| 23 |
+
attentions = outputs.attentions[-1].squeeze(0).mean(0) # Mean attention across heads
|
| 24 |
+
|
| 25 |
+
# Calculate dynamic threshold using sigmoid function
|
| 26 |
+
def calculate_threshold(base_relevance, min_threshold=0.0, max_threshold=0.5, k=10):
|
| 27 |
+
base_relevance_tensor = torch.tensor(base_relevance)
|
| 28 |
+
threshold = min_threshold + (max_threshold - min_threshold) * (
|
| 29 |
+
1 / (1 + torch.exp(-k * (base_relevance_tensor - 0.5)))
|
| 30 |
+
)
|
| 31 |
+
return threshold.item()
|
| 32 |
+
|
| 33 |
+
dynamic_threshold = calculate_threshold(relevance_score) * weight
|
| 34 |
+
|
| 35 |
+
# Extract important tokens based on attention scores
|
| 36 |
+
relevant_indices = (attentions > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()
|
| 37 |
+
|
| 38 |
+
# Highlight tokens in the original order, using HTML bold tags
|
| 39 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
highlighted_text = ""
|
| 41 |
+
for idx, token in enumerate(tokens):
|
| 42 |
if idx in relevant_indices:
|
| 43 |
highlighted_text += f"<b>{token}</b> "
|
| 44 |
else:
|
|
|
|
| 46 |
|
| 47 |
highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
|
| 48 |
|
| 49 |
+
# Print values to debug
|
| 50 |
+
print(f"Relevance Score: {relevance_score}")
|
| 51 |
+
print(f"Dynamic Threshold: {dynamic_threshold}")
|
| 52 |
|
| 53 |
+
return relevance_score, dynamic_threshold, highlighted_text
|
| 54 |
+
|
| 55 |
+
# Create Gradio interface with a slider for threshold adjustment weight
|
| 56 |
+
iface = gr.Interface(
|
| 57 |
+
fn=process_text,
|
| 58 |
inputs=[
|
| 59 |
+
gr.Textbox(label="Query"),
|
| 60 |
+
gr.Textbox(label="Document Paragraph"),
|
| 61 |
+
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Threshold Weight"),
|
| 62 |
],
|
| 63 |
outputs=[
|
| 64 |
gr.Textbox(label="Relevance Score"),
|
| 65 |
+
gr.Textbox(label="Dynamic Threshold"),
|
| 66 |
gr.HTML(label="Highlighted Document Paragraph")
|
| 67 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
| 70 |
+
iface.launch()
|
|
|