Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
| 8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
model.eval()
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Function to compute relevance score and dynamically adjust threshold
|
| 12 |
def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
|
| 13 |
if not query.strip() or not paragraph.strip():
|
|
@@ -23,8 +27,8 @@ def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
|
|
| 23 |
logit = output.logits.squeeze().item()
|
| 24 |
base_relevance_score = torch.sigmoid(torch.tensor(logit)).item()
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
dynamic_threshold =
|
| 28 |
|
| 29 |
# Extract attention scores (last layer)
|
| 30 |
attention = output.attentions[-1]
|
|
@@ -66,14 +70,14 @@ interface = gr.Interface(
|
|
| 66 |
inputs=[
|
| 67 |
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
| 68 |
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match..."),
|
| 69 |
-
gr.Slider(minimum=0.
|
| 70 |
],
|
| 71 |
outputs=[
|
| 72 |
gr.Textbox(label="Relevance Score"),
|
| 73 |
gr.HTML(label="Highlighted Document Paragraph")
|
| 74 |
],
|
| 75 |
title="Cross-Encoder Attention Highlighting",
|
| 76 |
-
description="Adjust the attention threshold to control token highlighting sensitivity.",
|
| 77 |
allow_flagging="never",
|
| 78 |
live=True
|
| 79 |
)
|
|
|
|
| 8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
model.eval()
|
| 10 |
|
| 11 |
+
# Sigmoid-based threshold adjustment function
|
| 12 |
+
def calculate_threshold(base_relevance, min_threshold=0.02, max_threshold=0.5, k=10):
|
| 13 |
+
return min_threshold + (max_threshold - min_threshold) * (1 / (1 + torch.exp(-k * (base_relevance - 0.5))))
|
| 14 |
+
|
| 15 |
# Function to compute relevance score and dynamically adjust threshold
|
| 16 |
def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
|
| 17 |
if not query.strip() or not paragraph.strip():
|
|
|
|
| 27 |
logit = output.logits.squeeze().item()
|
| 28 |
base_relevance_score = torch.sigmoid(torch.tensor(logit)).item()
|
| 29 |
|
| 30 |
+
# Compute dynamic threshold using sigmoid-based adjustment
|
| 31 |
+
dynamic_threshold = calculate_threshold(base_relevance_score) * threshold_weight
|
| 32 |
|
| 33 |
# Extract attention scores (last layer)
|
| 34 |
attention = output.attentions[-1]
|
|
|
|
| 70 |
inputs=[
|
| 71 |
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
| 72 |
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match..."),
|
| 73 |
+
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Threshold Weight")
|
| 74 |
],
|
| 75 |
outputs=[
|
| 76 |
gr.Textbox(label="Relevance Score"),
|
| 77 |
gr.HTML(label="Highlighted Document Paragraph")
|
| 78 |
],
|
| 79 |
title="Cross-Encoder Attention Highlighting",
|
| 80 |
+
description="Adjust the attention threshold weight to control token highlighting sensitivity.",
|
| 81 |
allow_flagging="never",
|
| 82 |
live=True
|
| 83 |
)
|