Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load Jina CLIP model
|
| 7 |
+
model_name = "jinaai/jina-clip-v1"
|
| 8 |
+
model = CLIPModel.from_pretrained(model_name)
|
| 9 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
def compute_similarity(input1, input2, type1, type2):
|
| 12 |
+
inputs = []
|
| 13 |
+
|
| 14 |
+
# Process input1
|
| 15 |
+
if type1 == "Image":
|
| 16 |
+
image1 = Image.open(input1).convert("RGB")
|
| 17 |
+
inputs.append(processor(images=image1, return_tensors="pt"))
|
| 18 |
+
else:
|
| 19 |
+
inputs.append(processor(text=[input1], return_tensors="pt"))
|
| 20 |
+
|
| 21 |
+
# Process input2
|
| 22 |
+
if type2 == "Image":
|
| 23 |
+
image2 = Image.open(input2).convert("RGB")
|
| 24 |
+
inputs.append(processor(images=image2, return_tensors="pt"))
|
| 25 |
+
else:
|
| 26 |
+
inputs.append(processor(text=[input2], return_tensors="pt"))
|
| 27 |
+
|
| 28 |
+
# Compute embeddings
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
if type1 == "Image":
|
| 31 |
+
embedding1 = model.get_image_features(**inputs[0])
|
| 32 |
+
else:
|
| 33 |
+
embedding1 = model.get_text_features(**inputs[0])
|
| 34 |
+
|
| 35 |
+
if type2 == "Image":
|
| 36 |
+
embedding2 = model.get_image_features(**inputs[1])
|
| 37 |
+
else:
|
| 38 |
+
embedding2 = model.get_text_features(**inputs[1])
|
| 39 |
+
|
| 40 |
+
# Compute similarity
|
| 41 |
+
similarity = torch.nn.functional.cosine_similarity(embedding1, embedding2)
|
| 42 |
+
return similarity.item()
|
| 43 |
+
|
| 44 |
+
with gr.Blocks() as demo:
|
| 45 |
+
gr.Markdown("# CLIP-based Similarity Comparison")
|
| 46 |
+
|
| 47 |
+
with gr.Row():
|
| 48 |
+
type1 = gr.Radio(["Image", "Text"], label="Input 1 Type", value="Image")
|
| 49 |
+
type2 = gr.Radio(["Image", "Text"], label="Input 2 Type", value="Text")
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
input1 = gr.File(label="Upload Image 1 or Enter Text")
|
| 53 |
+
input2 = gr.File(label="Upload Image 2 or Enter Text")
|
| 54 |
+
|
| 55 |
+
compare_btn = gr.Button("Compare")
|
| 56 |
+
output = gr.Textbox(label="Similarity Score")
|
| 57 |
+
|
| 58 |
+
compare_btn.click(compute_similarity, inputs=[input1, input2, type1, type2], outputs=output)
|
| 59 |
+
|
| 60 |
+
demo.launch()
|