Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,24 +16,32 @@ model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 17 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 18 |
|
| 19 |
-
def compute_similarity(input1, input2, type1, type2):
|
| 20 |
# Process input1
|
| 21 |
if type1 == "Image":
|
|
|
|
|
|
|
| 22 |
image1 = Image.open(input1).convert("RGB")
|
| 23 |
input1_tensor = processor(images=image1, return_tensors="pt")["pixel_values"]
|
| 24 |
-
elif
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
else:
|
| 27 |
-
return "Error: Invalid
|
| 28 |
|
| 29 |
# Process input2
|
| 30 |
if type2 == "Image":
|
|
|
|
|
|
|
| 31 |
image2 = Image.open(input2).convert("RGB")
|
| 32 |
input2_tensor = processor(images=image2, return_tensors="pt")["pixel_values"]
|
| 33 |
-
elif
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
else:
|
| 36 |
-
return "Error: Invalid
|
| 37 |
|
| 38 |
# Compute embeddings
|
| 39 |
with torch.no_grad():
|
|
@@ -72,6 +80,8 @@ with gr.Blocks() as demo:
|
|
| 72 |
inputs=[
|
| 73 |
input1,
|
| 74 |
input2,
|
|
|
|
|
|
|
| 75 |
type1,
|
| 76 |
type2
|
| 77 |
],
|
|
|
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 17 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 18 |
|
| 19 |
+
def compute_similarity(input1, input2, text1, text2, type1, type2):
|
| 20 |
# Process input1
|
| 21 |
if type1 == "Image":
|
| 22 |
+
if not input1:
|
| 23 |
+
return "Error: No image provided for Input 1"
|
| 24 |
image1 = Image.open(input1).convert("RGB")
|
| 25 |
input1_tensor = processor(images=image1, return_tensors="pt")["pixel_values"]
|
| 26 |
+
elif type1 == "Text":
|
| 27 |
+
if not text1.strip():
|
| 28 |
+
return "Error: No text provided for Input 1"
|
| 29 |
+
input1_tensor = tokenizer(text1, return_tensors="pt")["input_ids"]
|
| 30 |
else:
|
| 31 |
+
return "Error: Invalid input type for Input 1"
|
| 32 |
|
| 33 |
# Process input2
|
| 34 |
if type2 == "Image":
|
| 35 |
+
if not input2:
|
| 36 |
+
return "Error: No image provided for Input 2"
|
| 37 |
image2 = Image.open(input2).convert("RGB")
|
| 38 |
input2_tensor = processor(images=image2, return_tensors="pt")["pixel_values"]
|
| 39 |
+
elif type2 == "Text":
|
| 40 |
+
if not text2.strip():
|
| 41 |
+
return "Error: No text provided for Input 2"
|
| 42 |
+
input2_tensor = tokenizer(text2, return_tensors="pt")["input_ids"]
|
| 43 |
else:
|
| 44 |
+
return "Error: Invalid input type for Input 2"
|
| 45 |
|
| 46 |
# Compute embeddings
|
| 47 |
with torch.no_grad():
|
|
|
|
| 80 |
inputs=[
|
| 81 |
input1,
|
| 82 |
input2,
|
| 83 |
+
text1,
|
| 84 |
+
text2,
|
| 85 |
type1,
|
| 86 |
type2
|
| 87 |
],
|