File size: 11,844 Bytes
b4bbb92
 
 
 
2ba71a4
b4bbb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba71a4
 
 
 
 
 
b4bbb92
 
 
2ba71a4
b4bbb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python3

from typing import Any, Callable
import json
import os

import fire
import torch
import torchaudio
import soundfile as sf
import numpy as np

from modeling_uniflow_audio import UniFlowAudioModel
from constants import TIME_ALIGNED_TASKS, NON_TIME_ALIGNED_TASKS


class InferenceCLI:
    def __init__(self):
        self.model_name = None
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu"
        )
        self.g2p = None
        self.speaker_model = None
        self.svs_processor = None
        self.singer_mapping = None

        self.video_preprocessor = None
        self.video_size = (256, 256)
        self.video_fps = 10

    def init_model(self, model_name):
        self.model_name = model_name
        self.model = UniFlowAudioModel(f"wsntxxn/{model_name}")
        self.model.to(self.device)
        self.sample_rate = self.model.config["sample_rate"]

    def init_speaker_model(self, ):
        import wespeaker

        if self.speaker_model is None:
            self.speaker_model = wespeaker.load_model("english")
            self.speaker_model.set_device(self.device)

    def init_svs_processor(self, ):
        from utils.diffsinger_utilities import SVSInputConverter, TokenTextEncoder

        if self.svs_processor is None:
            phoneme_list = json.load(open(self.model.svs_phone_set_path, "r"))
            self.svs_processor = {
                "converter":
                    SVSInputConverter(
                        self.model.svs_singer_mapping, self.model.svs_pinyin2ph
                    ),
                "tokenizer":
                    TokenTextEncoder(
                        None, vocab_list=phoneme_list, replace_oov=','
                    )
            }

    def init_video_preprocessor(self, ):
        if self.video_preprocessor is None:
            from transformers import CLIPImageProcessor, CLIPVisionModel
            import torchvision
            self.video_preprocessor = {
                "transform":
                    torchvision.transforms.Resize(self.video_size),
                "processor":
                    CLIPImageProcessor.
                    from_pretrained("openai/clip-vit-large-patch14"),
                "encoder":
                    CLIPVisionModel.
                    from_pretrained("openai/clip-vit-large-patch14")
            }
            self.video_preprocessor["encoder"].to(self.device)
            self.video_preprocessor["encoder"].eval()

    def on_inference_start(self, model_name):
        if self.model_name is None or model_name != self.model_name:
            self.init_model(model_name)

    @staticmethod
    def add_prehook(func: Callable, ):
        def wrapper(self, *args, **kwargs):
            model_name = kwargs["model_name"]
            self.on_inference_start(model_name)
            return func(self, *args, **kwargs)

        return wrapper

    @add_prehook
    def t2a(
        self,
        caption: str,
        model_name: str = "UniFlow-Audio-large",
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        self._run_inference(
            content=caption,
            task="text_to_audio",
            instruction=instruction,
            instruction_idx=instruction_idx,
            model_name=model_name,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path
        )

    @add_prehook
    def t2m(
        self,
        caption: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        self._run_inference(
            content=caption,
            task="text_to_music",
            model_name=model_name,
            instruction=instruction,
            instruction_idx=instruction_idx,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path,
        )

    @add_prehook
    def tts(
        self,
        transcript: str,
        ref_speaker_speech: str,
        model_name: str = "UniFlow-Audio-large",
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        from g2p_en import G2p
        import nltk

        self.init_speaker_model()

        if not self.g2p:
            if not os.path.exists(
                os.path.expanduser(
                    "~/nltk_data/taggers/averaged_perceptron_tagger_eng"
                )
            ):
                nltk.download("averaged_perceptron_tagger_eng")
            self.g2p = G2p()

        phonemes = self.g2p(transcript)
        phonemes = [ph for ph in phonemes if ph != " "]
        phone_indices = [
            self.model.tts_phone2id.get(
                p, self.model.tts_phone2id.get("spn", 0)
            ) for p in phonemes
        ]
        xvector = self.speaker_model.extract_embedding(ref_speaker_speech)

        content = {
            "phoneme": np.array(phone_indices, dtype=np.int64),
            "spk": np.array(xvector, dtype=np.float32),
        }
        self._run_inference(
            content=content,
            task="text_to_speech",
            model_name=model_name,
            instruction=instruction,
            instruction_idx=instruction_idx,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path,
        )

    @add_prehook
    def _audio_input_inference(
        self,
        input_audio: str,
        task: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        waveform, orig_sr = torchaudio.load(input_audio)
        waveform = waveform.mean(0)
        waveform = torchaudio.functional.resample(
            waveform, orig_freq=orig_sr, new_freq=self.sample_rate
        )
        self._run_inference(
            content=waveform,
            task=task,
            instruction=instruction,
            instruction_idx=instruction_idx,
            model_name=model_name,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path
        )

    def se(
        self,
        noisy_speech: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 1.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        self._audio_input_inference(
            input_audio=noisy_speech,
            task="speech_enhancement",
            instruction=instruction,
            instruction_idx=instruction_idx,
            model_name=model_name,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path
        )

    def sr(
        self,
        low_sr_audio: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 1.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        self._audio_input_inference(
            input_audio=low_sr_audio,
            task="audio_super_resolution",
            instruction=instruction,
            instruction_idx=instruction_idx,
            model_name=model_name,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path
        )

    @add_prehook
    def v2a(
        self,
        video: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.mp4",
    ):
        from utils.video import read_video_frames, merge_audio_video

        self.init_video_preprocessor()
        video_path = video
        video = read_video_frames(
            video,
            duration=None,
            fps=self.video_fps,
            video_size=self.video_size,
            resize_transform=self.video_preprocessor["transform"]
        )
        pixel_values = self.video_preprocessor["processor"](
            images=video, return_tensors="pt"
        ).pixel_values.to(self.device)

        with torch.no_grad():
            output = self.video_preprocessor["encoder"](pixel_values)
            video_feature = output.pooler_output

        waveform = self._run_inference(
            content=video_feature,
            task="video_to_audio",
            model_name=model_name,
            instruction=instruction,
            instruction_idx=instruction_idx,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path,
        )

        merge_audio_video(
            waveform, video_path, output_path, audio_fps=self.sample_rate
        )

    @add_prehook
    def svs(
        self,
        singer: str,
        music_score: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        self.init_svs_processor()
        text, note, note_dur = music_score.split('<sep>')
        if singer not in self.model.svs_singer_mapping:
            print(f"Unsupported singer {singer}, available singers: ")
            print(list(self.model.svs_singer_mapping.keys()))
            raise KeyError

        midi = self.svs_processor["converter"].preprocess_input({
            "spk_name": singer,
            "text": text,
            "notes": note,
            "notes_duration": note_dur,
        })
        midi["phoneme"] = self.svs_processor["tokenizer"].encode(
            midi["phoneme"]
        )
        self._run_inference(
            content=midi,
            task="singing_voice_synthesis",
            model_name=model_name,
            instruction=instruction,
            instruction_idx=instruction_idx,
            guidance_scale=guidance_scale,
            num_steps=num_steps,
            output_path=output_path,
        )

    def _run_inference(
        self,
        content: Any,
        task: str,
        model_name: str,
        instruction: str | None = None,
        instruction_idx: int | None = None,
        guidance_scale: float = 5.0,
        num_steps: int = 25,
        output_path: str = "./output.wav",
    ):
        if self.model_name is None or model_name != self.model_name:
            self.init_model(model_name)
        if task in TIME_ALIGNED_TASKS:
            is_time_aligned = True
        else:
            is_time_aligned = False
        if instruction:
            instruction = [instruction]
        if instruction_idx:
            instruction_idx = [instruction_idx]

        waveform = self.model.sample(
            content=[content],
            task=[task],
            is_time_aligned=[is_time_aligned],
            instruction=instruction,
            instruction_idx=instruction_idx,
            num_steps=num_steps,
            guidance_scale=guidance_scale,
            disable_progress=False
        )
        waveform = waveform[0, 0].cpu().numpy()

        if not output_path.endswith(".mp4"):
            sf.write(output_path, waveform, self.sample_rate)

        return waveform


if __name__ == "__main__":
    fire.Fire(InferenceCLI)