File size: 13,582 Bytes
5cf30c0
6acc3f3
 
 
 
 
 
 
 
 
 
 
 
 
5cf30c0
6acc3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cf30c0
 
2cfbbfe
 
 
 
5cf30c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15887ea
5cf30c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6acc3f3
5cf30c0
6acc3f3
5cf30c0
6acc3f3
 
 
 
 
 
 
 
 
 
 
 
 
5cf30c0
 
6acc3f3
 
 
5cf30c0
6acc3f3
 
 
 
5cf30c0
 
 
 
6acc3f3
 
5cf30c0
6acc3f3
 
 
 
 
 
 
 
 
5cf30c0
 
 
 
 
15887ea
6acc3f3
 
5cf30c0
6acc3f3
 
15887ea
6acc3f3
 
 
 
 
5cf30c0
 
 
 
6acc3f3
 
 
5cf30c0
 
 
 
 
 
6acc3f3
5cf30c0
15887ea
6acc3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cf30c0
6acc3f3
 
5cf30c0
6acc3f3
 
 
 
 
 
 
15887ea
 
5cf30c0
 
 
15887ea
5cf30c0
 
15887ea
 
5cf30c0
6acc3f3
 
5cf30c0
 
 
6acc3f3
5cf30c0
 
6acc3f3
 
 
5cf30c0
 
2cfbbfe
 
 
 
 
15887ea
 
5cf30c0
 
 
15887ea
5cf30c0
6acc3f3
5cf30c0
 
 
 
 
6acc3f3
 
 
5cf30c0
6acc3f3
 
 
 
5cf30c0
6acc3f3
 
 
5cf30c0
6acc3f3
5cf30c0
6acc3f3
5cf30c0
6acc3f3
5cf30c0
6acc3f3
5cf30c0
 
15887ea
5cf30c0
 
 
 
 
15887ea
6acc3f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

import spaces                        # for ZeroGPU support
import gradio as gr
import pandas as pd
import numpy as np
import torch
from threading import Thread
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    AutoProcessor,
    TextIteratorStreamer
)

# ─── MODEL SETUP ────────────────────────────────────────────────────────────────
MODEL_NAME = "bytedance-research/ChatTS-14B"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME, trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
    MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer
)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
    device_map="auto",
    torch_dtype=torch.float16
)
model.eval()

# ─── VISUAL THEME (Dark) ───────────────────────────────────────────────────────
CSS = """
.gradio-container {
  box-shadow: none !important;
  border: none !important;
}
:root{
  --bg:#0b1020; --bg-2:#10172e; --panel:#141b34; --panel-2:#0f172a;
  --border:#263154; --fg:#e7ecf5; --muted:#b9c2d3; --placeholder:#7c8195;
}
/* App background */
.gradio-container{background: linear-gradient(180deg,var(--bg),var(--bg) 40%, var(--bg-2)); color: var(--fg);}
/* Generic block panels */
.gradio-container .block, .gradio-container .form, .gradio-container .padded{
  background: linear-gradient(180deg,var(--panel),var(--panel-2));
  border: 1px solid var(--border);
  border-radius: 14px;
}
/* Inputs */
input[type="text"], textarea, select, .gr-textbox, .gr-dropdown, .gr-textbox textarea{
  background: #0f1630 !important; color: var(--fg) !important;
  border: 1px solid var(--border) !important; border-radius: 12px !important;
}
.gr-textbox textarea::placeholder{ color: var(--placeholder) !important; }
label, .svelte-1gfkn6j, .svelte-i3tvor, .label{ color: var(--muted) !important; }

/* Upload panel */
button.svelte-1x5qevo{ background:#0f1630 !important; color:var(--muted) !important; border-color:var(--border) !important; }
.svelte-12ioyct{ color: var(--muted) !important; }

/* Line plot container */
.vega-embed, canvas.marks{ background:#0b1020 !important; border-radius: 10px; }

/* Buttons base */
.gr-button{ border-radius:14px !important; border:1px solid var(--border) !important; color:#0b1020 !important; font-weight:700; }
.gr-button:hover{ transform: translateY(-1px); box-shadow:0 6px 18px rgba(0,0,0,.35); }
.gr-button-primary{ background: linear-gradient(180deg,#8ab4ff,#7aa2ff) !important; }
.gr-button-secondary{ background: linear-gradient(180deg,#a78bfa,#7aa2ff) !important; color:#0b1020 !important; }
.btn-chip{ padding:12px 16px !important; }

/* Example cards row */
.examples-row{ display:grid; grid-template-columns:repeat(auto-fit,minmax(180px,1fr)); gap:12px; margin:12px 0 8px; }
.cardbtn{ border:1px solid var(--border) !important; color:#0b1020 !important; }
.grad-blue{ background: linear-gradient(180deg,#93c5fd,#60a5fa) !important; }
.grad-purple{ background: linear-gradient(180deg,#c4b5fd,#a78bfa) !important; }
.grad-green{ background: linear-gradient(180deg,#bbf7d0,#34d399) !important; }
.grad-amber{ background: linear-gradient(180deg,#fde68a,#f59e0b) !important; }
.grad-rose{ background: linear-gradient(180deg,#fecaca,#fb7185) !important; }
.cardbtn:hover{ filter:brightness(1.02); transform:translateY(-1px); }

/* Subtle spacing fixes */
.gap, .padded{ padding:12px !important; }
"""

# ─── HELPERS ───────────────────────────────────────────────────────────────────
def create_default_timeseries():
    x = np.arange(256)
    ts1 = np.sin(x / 10) * 5.0
    ts1[103:] -= 10.0
    ts2 = x * 0.01
    ts2[100] += 10.0
    return pd.DataFrame({"TS1": ts1, "TS2": ts2})

def process_csv_file(csv_file):
    if csv_file is None:
        return None, "No file uploaded"
    try:
        df = pd.read_csv(csv_file.name)
        df.columns = [str(c).strip() for c in df.columns]
        df = df.loc[:, [c for c in df.columns if c]]
        df = df.dropna(axis=1, how="all")
        if df.shape[1] == 0:
            return None, "No valid time-series columns found."
        if df.shape[1] > 15:
            return None, f"Too many series ({df.shape[1]}). Max allowed = 15."
        ts_names = []
        ts_list = []
        for name in df.columns:
            series = df[name]
            if not pd.api.types.is_float_dtype(series):
                series = pd.to_numeric(series, errors='coerce')
            last_valid = series.last_valid_index()
            if last_valid is None:
                continue
            trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
            L = trimmed.shape[0]
            if L < 64 or L > 1024:
                return None, f"Series '{name}' length {L} invalid. Must be 64 to 1024."
            ts_names.append(name); ts_list.append(trimmed)
        if not ts_list:
            return None, "All time series are empty after trimming NaNs."
        return df, f"Loaded {len(ts_names)} series: {', '.join(ts_names)}"
    except Exception as e:
        return None, f"Error processing file: {str(e)}"

def preview_csv(csv_file, use_default):
    if csv_file is None:
        return gr.LinePlot(value=pd.DataFrame()), "Please upload a CSV file first", gr.Dropdown(), False
    df, message = process_csv_file(csv_file)
    if df is None:
        return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown(), False
    choices = list(df.columns)
    first = choices[0]
    df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[first].values))
    plot = gr.LinePlot(df_idx, x="_i", y=first, title=f"Time Series: {first}")
    dropdown = gr.Dropdown(choices=choices, value=first, label="Select a Column to Visualize")
    return plot, message, dropdown, False

def clear_csv():
    return gr.LinePlot(value=pd.DataFrame()), "Cleared.", gr.Dropdown()

def update_plot(csv_file, selected_column, use_default_state):
    if (csv_file is None and not use_default_state) or selected_column is None:
        return gr.LinePlot(value=pd.DataFrame())
    if csv_file is None and use_default_state:
        df = create_default_timeseries()
    else:
        df, _ = process_csv_file(csv_file)
    if df is None:
        return gr.LinePlot(value=pd.DataFrame())
    df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[selected_column].values))
    return gr.LinePlot(df_idx, x="_i", y=selected_column, title=f"Time Series: {selected_column}")

def initialize_interface():
    df = create_default_timeseries()
    choices = list(df.columns); first = choices[0]
    df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[first].values))
    plot = gr.LinePlot(df_idx, x="_i", y=first, title=f"Time Series: {first}")
    dropdown = gr.Dropdown(choices=choices, value=first, label="Select a Column to Visualize")
    msg = "Using default time series (TS1 and TS2). Select a series from the dropdown for visualization."
    return plot, msg, dropdown, True

# ─── INFERENCE ─────────────────────────────────────────────────────────────────
@spaces.GPU
def infer_chatts_stream(prompt: str, csv_file, use_default):
    if not prompt.strip():
        yield "Please enter a prompt"
        return
    if csv_file is None and use_default:
        df = create_default_timeseries()
        error_msg = None
    else:
        df, error_msg = process_csv_file(csv_file)
    if df is None:
        yield "Please upload a CSV file first or the file contains errors"
        return
    try:
        ts_names, ts_list = [], []
        for name in df.columns:
            series = df[name]; last_valid = series.last_valid_index()
            if last_valid is not None:
                trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
                ts_names.append(name); ts_list.append(trimmed)
        if not ts_list:
            yield "No valid time series data found. Please upload time series first."
            return
        clean_prompt = prompt.replace("<ts>", "").replace("<ts/>", "")
        prefix = f"I have {len(ts_list)} time series:\n"
        for name, arr in zip(ts_names, ts_list):
            prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
        full_prompt = (
            "<|im_start|>system\nYou are a helpful assistant. Your name is ChatTS. "
            "You can analyze time series data and provide insights. If user asks who you are, you should give your name and capabilities "
            "in the language of the prompt. If no time series are provided, you should say 'I cannot answer this question as you haven't provide the timeseries I need' "
            "in the language of the prompt. Always check if the user has provided at least one time series data before answering."
            "<|im_end|><|im_start|>user\n"
            f"{prefix}{clean_prompt} Please output a step-by-step analysis about the time series attributes that mentioned in the question first, "
            "and then give a detailed result about this question. Always remember to carefully double check the values before answer the results."
            "<|im_end|><|im_start|>assistant\n"
        )
        inputs = processor(text=[full_prompt], timeseries=ts_list, padding=True, return_tensors="pt")
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
        streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
        inputs.update({"max_new_tokens": 512, "streamer": streamer, "temperature": 0.3})
        thread = Thread(target=model.generate, kwargs=inputs); thread.start()
        out = ""
        for new_text in streamer:
            out += new_text
            yield out
    except Exception as e:
        yield f"Error during inference: {str(e)}"

# ─── EXAMPLES (semantic names) ─────────────────────────────────────────────────
EXAMPLE_PROMPTS = {
    "πŸ” Detect Spikes": "Identify all spikes in each series and report timestamps and magnitudes. Explain briefly.",
    "πŸ“ˆ Trend & Seasonality": "Describe the trend and seasonality for the provided time series TS1.",
    "πŸ”— Compare Metrics": "Compare the two series (TS1 and TS2). Are there lagged correlations? Estimate the lag and correlation strength.",
    "⚑ Local Change Analysis": "Find intervals with >10% rise or drop relative to the prior 20 points for TS1. Return intervals and reasons.",
    "πŸ“Š Correlation Strength": "Quantify Pearson correlation between each pair of series (TS1 and TS2) and highlight the strongest positive/negative pairs."
}

# ─── UI ────────────────────────────────────────────────────────────────────────
with gr.Blocks(title="ChatTS Demo", css=CSS) as demo:
    use_default_state = gr.State(value=True)

    gr.HTML("<h3 style='text-align:center; color:#e8ebfa; font-size:20px; font-weight:700; margin-top:8px;'>πŸ’‘ Click an example below and click Run ChatTS to try different questions with default time series or upload your own CSV file.</h3>")

    with gr.Row(elem_classes="examples-row"):
        btns = {}
        grads = ["grad-blue","grad-purple","grad-green","grad-amber","grad-rose"]
        for (title, prompt), grad in zip(EXAMPLE_PROMPTS.items(), grads):
            btns[title] = gr.Button(title, elem_classes=f"cardbtn btn-chip {grad}")

    with gr.Row():
        with gr.Column(scale=1):
            upload = gr.File(label="", file_types=[".csv"], type="filepath")
            prompt_input = gr.Textbox(
                lines=6,
                placeholder="Enter your question here...",
                label="Analysis Prompt",
                value="Find the maximum and minimum values in each series and comment on them."
            )
            run_btn = gr.Button("Run ChatTS", variant="primary")
        with gr.Column(scale=2):
            series_selector = gr.Dropdown(label="Select a Column to Visualize", choices=[], value=None)
            plot_out = gr.LinePlot(value=pd.DataFrame(), label="Time Series Visualization")
            file_status = gr.Textbox(label="File Status", interactive=False, lines=2)

    text_out = gr.Textbox(lines=10, label="ChatTS Analysis Results", interactive=False)

    demo.load(fn=initialize_interface, outputs=[plot_out, file_status, series_selector, use_default_state])

    for title, prompt in EXAMPLE_PROMPTS.items():
        btns[title].click(fn=lambda p=prompt: p, outputs=prompt_input)

    upload.upload(fn=preview_csv, inputs=[upload, use_default_state],
                  outputs=[plot_out, file_status, series_selector, use_default_state])
    upload.clear(fn=clear_csv, outputs=[plot_out, file_status, series_selector])
    series_selector.change(fn=update_plot, inputs=[upload, series_selector, use_default_state], outputs=[plot_out])
    run_btn.click(fn=infer_chatts_stream, inputs=[prompt_input, upload, use_default_state], outputs=[text_out])

if __name__ == '__main__':
    demo.launch()