import spaces # for ZeroGPU support import gradio as gr import pandas as pd import numpy as np import torch from threading import Thread from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer ) # ─── MODEL SETUP ──────────────────────────────────────────────────────────────── MODEL_NAME = "bytedance-research/ChatTS-14B" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, trust_remote_code=True ) processor = AutoProcessor.from_pretrained( MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, trust_remote_code=True, device_map="auto", torch_dtype=torch.float16 ) model.eval() # ─── VISUAL THEME (Dark) ─────────────────────────────────────────────────────── CSS = """ .gradio-container { box-shadow: none !important; border: none !important; } :root{ --bg:#0b1020; --bg-2:#10172e; --panel:#141b34; --panel-2:#0f172a; --border:#263154; --fg:#e7ecf5; --muted:#b9c2d3; --placeholder:#7c8195; } /* App background */ .gradio-container{background: linear-gradient(180deg,var(--bg),var(--bg) 40%, var(--bg-2)); color: var(--fg);} /* Generic block panels */ .gradio-container .block, .gradio-container .form, .gradio-container .padded{ background: linear-gradient(180deg,var(--panel),var(--panel-2)); border: 1px solid var(--border); border-radius: 14px; } /* Inputs */ input[type="text"], textarea, select, .gr-textbox, .gr-dropdown, .gr-textbox textarea{ background: #0f1630 !important; color: var(--fg) !important; border: 1px solid var(--border) !important; border-radius: 12px !important; } .gr-textbox textarea::placeholder{ color: var(--placeholder) !important; } label, .svelte-1gfkn6j, .svelte-i3tvor, .label{ color: var(--muted) !important; } /* Upload panel */ button.svelte-1x5qevo{ background:#0f1630 !important; color:var(--muted) !important; border-color:var(--border) !important; } .svelte-12ioyct{ color: var(--muted) !important; } /* Line plot container */ .vega-embed, canvas.marks{ background:#0b1020 !important; border-radius: 10px; } /* Buttons base */ .gr-button{ border-radius:14px !important; border:1px solid var(--border) !important; color:#0b1020 !important; font-weight:700; } .gr-button:hover{ transform: translateY(-1px); box-shadow:0 6px 18px rgba(0,0,0,.35); } .gr-button-primary{ background: linear-gradient(180deg,#8ab4ff,#7aa2ff) !important; } .gr-button-secondary{ background: linear-gradient(180deg,#a78bfa,#7aa2ff) !important; color:#0b1020 !important; } .btn-chip{ padding:12px 16px !important; } /* Example cards row */ .examples-row{ display:grid; grid-template-columns:repeat(auto-fit,minmax(180px,1fr)); gap:12px; margin:12px 0 8px; } .cardbtn{ border:1px solid var(--border) !important; color:#0b1020 !important; } .grad-blue{ background: linear-gradient(180deg,#93c5fd,#60a5fa) !important; } .grad-purple{ background: linear-gradient(180deg,#c4b5fd,#a78bfa) !important; } .grad-green{ background: linear-gradient(180deg,#bbf7d0,#34d399) !important; } .grad-amber{ background: linear-gradient(180deg,#fde68a,#f59e0b) !important; } .grad-rose{ background: linear-gradient(180deg,#fecaca,#fb7185) !important; } .cardbtn:hover{ filter:brightness(1.02); transform:translateY(-1px); } /* Subtle spacing fixes */ .gap, .padded{ padding:12px !important; } """ # ─── HELPERS ─────────────────────────────────────────────────────────────────── def create_default_timeseries(): x = np.arange(256) ts1 = np.sin(x / 10) * 5.0 ts1[103:] -= 10.0 ts2 = x * 0.01 ts2[100] += 10.0 return pd.DataFrame({"TS1": ts1, "TS2": ts2}) def process_csv_file(csv_file): if csv_file is None: return None, "No file uploaded" try: df = pd.read_csv(csv_file.name) df.columns = [str(c).strip() for c in df.columns] df = df.loc[:, [c for c in df.columns if c]] df = df.dropna(axis=1, how="all") if df.shape[1] == 0: return None, "No valid time-series columns found." if df.shape[1] > 15: return None, f"Too many series ({df.shape[1]}). Max allowed = 15." ts_names = [] ts_list = [] for name in df.columns: series = df[name] if not pd.api.types.is_float_dtype(series): series = pd.to_numeric(series, errors='coerce') last_valid = series.last_valid_index() if last_valid is None: continue trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32) L = trimmed.shape[0] if L < 64 or L > 1024: return None, f"Series '{name}' length {L} invalid. Must be 64 to 1024." ts_names.append(name); ts_list.append(trimmed) if not ts_list: return None, "All time series are empty after trimming NaNs." return df, f"Loaded {len(ts_names)} series: {', '.join(ts_names)}" except Exception as e: return None, f"Error processing file: {str(e)}" def preview_csv(csv_file, use_default): if csv_file is None: return gr.LinePlot(value=pd.DataFrame()), "Please upload a CSV file first", gr.Dropdown(), False df, message = process_csv_file(csv_file) if df is None: return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown(), False choices = list(df.columns) first = choices[0] df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[first].values)) plot = gr.LinePlot(df_idx, x="_i", y=first, title=f"Time Series: {first}") dropdown = gr.Dropdown(choices=choices, value=first, label="Select a Column to Visualize") return plot, message, dropdown, False def clear_csv(): return gr.LinePlot(value=pd.DataFrame()), "Cleared.", gr.Dropdown() def update_plot(csv_file, selected_column, use_default_state): if (csv_file is None and not use_default_state) or selected_column is None: return gr.LinePlot(value=pd.DataFrame()) if csv_file is None and use_default_state: df = create_default_timeseries() else: df, _ = process_csv_file(csv_file) if df is None: return gr.LinePlot(value=pd.DataFrame()) df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[selected_column].values)) return gr.LinePlot(df_idx, x="_i", y=selected_column, title=f"Time Series: {selected_column}") def initialize_interface(): df = create_default_timeseries() choices = list(df.columns); first = choices[0] df_idx = df.copy(); df_idx["_i"] = np.arange(len(df[first].values)) plot = gr.LinePlot(df_idx, x="_i", y=first, title=f"Time Series: {first}") dropdown = gr.Dropdown(choices=choices, value=first, label="Select a Column to Visualize") msg = "Using default time series (TS1 and TS2). Select a series from the dropdown for visualization." return plot, msg, dropdown, True # ─── INFERENCE ───────────────────────────────────────────────────────────────── @spaces.GPU def infer_chatts_stream(prompt: str, csv_file, use_default): if not prompt.strip(): yield "Please enter a prompt" return if csv_file is None and use_default: df = create_default_timeseries() error_msg = None else: df, error_msg = process_csv_file(csv_file) if df is None: yield "Please upload a CSV file first or the file contains errors" return try: ts_names, ts_list = [], [] for name in df.columns: series = df[name]; last_valid = series.last_valid_index() if last_valid is not None: trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32) ts_names.append(name); ts_list.append(trimmed) if not ts_list: yield "No valid time series data found. Please upload time series first." return clean_prompt = prompt.replace("", "").replace("", "") prefix = f"I have {len(ts_list)} time series:\n" for name, arr in zip(ts_names, ts_list): prefix += f"The {name} is of length {len(arr)}: \n" full_prompt = ( "<|im_start|>system\nYou are a helpful assistant. Your name is ChatTS. " "You can analyze time series data and provide insights. If user asks who you are, you should give your name and capabilities " "in the language of the prompt. If no time series are provided, you should say 'I cannot answer this question as you haven't provide the timeseries I need' " "in the language of the prompt. Always check if the user has provided at least one time series data before answering." "<|im_end|><|im_start|>user\n" f"{prefix}{clean_prompt} Please output a step-by-step analysis about the time series attributes that mentioned in the question first, " "and then give a detailed result about this question. Always remember to carefully double check the values before answer the results." "<|im_end|><|im_start|>assistant\n" ) inputs = processor(text=[full_prompt], timeseries=ts_list, padding=True, return_tensors="pt") inputs = {k: v.to(model.device) for k, v in inputs.items()} streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) inputs.update({"max_new_tokens": 512, "streamer": streamer, "temperature": 0.3}) thread = Thread(target=model.generate, kwargs=inputs); thread.start() out = "" for new_text in streamer: out += new_text yield out except Exception as e: yield f"Error during inference: {str(e)}" # ─── EXAMPLES (semantic names) ───────────────────────────────────────────────── EXAMPLE_PROMPTS = { "🔍 Detect Spikes": "Identify all spikes in each series and report timestamps and magnitudes. Explain briefly.", "📈 Trend & Seasonality": "Describe the trend and seasonality for the provided time series TS1.", "🔗 Compare Metrics": "Compare the two series (TS1 and TS2). Are there lagged correlations? Estimate the lag and correlation strength.", "⚡ Local Change Analysis": "Find intervals with >10% rise or drop relative to the prior 20 points for TS1. Return intervals and reasons.", "📊 Correlation Strength": "Quantify Pearson correlation between each pair of series (TS1 and TS2) and highlight the strongest positive/negative pairs." } # ─── UI ──────────────────────────────────────────────────────────────────────── with gr.Blocks(title="ChatTS Demo", css=CSS) as demo: use_default_state = gr.State(value=True) gr.HTML("

💡 Click an example below and click Run ChatTS to try different questions with default time series or upload your own CSV file.

") with gr.Row(elem_classes="examples-row"): btns = {} grads = ["grad-blue","grad-purple","grad-green","grad-amber","grad-rose"] for (title, prompt), grad in zip(EXAMPLE_PROMPTS.items(), grads): btns[title] = gr.Button(title, elem_classes=f"cardbtn btn-chip {grad}") with gr.Row(): with gr.Column(scale=1): upload = gr.File(label="", file_types=[".csv"], type="filepath") prompt_input = gr.Textbox( lines=6, placeholder="Enter your question here...", label="Analysis Prompt", value="Find the maximum and minimum values in each series and comment on them." ) run_btn = gr.Button("Run ChatTS", variant="primary") with gr.Column(scale=2): series_selector = gr.Dropdown(label="Select a Column to Visualize", choices=[], value=None) plot_out = gr.LinePlot(value=pd.DataFrame(), label="Time Series Visualization") file_status = gr.Textbox(label="File Status", interactive=False, lines=2) text_out = gr.Textbox(lines=10, label="ChatTS Analysis Results", interactive=False) demo.load(fn=initialize_interface, outputs=[plot_out, file_status, series_selector, use_default_state]) for title, prompt in EXAMPLE_PROMPTS.items(): btns[title].click(fn=lambda p=prompt: p, outputs=prompt_input) upload.upload(fn=preview_csv, inputs=[upload, use_default_state], outputs=[plot_out, file_status, series_selector, use_default_state]) upload.clear(fn=clear_csv, outputs=[plot_out, file_status, series_selector]) series_selector.change(fn=update_plot, inputs=[upload, series_selector, use_default_state], outputs=[plot_out]) run_btn.click(fn=infer_chatts_stream, inputs=[prompt_input, upload, use_default_state], outputs=[text_out]) if __name__ == '__main__': demo.launch()