Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,272 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
model_id = "xingyu1996/tiger-gpt2"
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
}
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# 只保留新生成的部分
|
| 36 |
-
new_tokens = output_ids[0, input_ids.shape[1]:]
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
#
|
| 44 |
demo = gr.ChatInterface(
|
| 45 |
respond,
|
| 46 |
additional_inputs=[
|
| 47 |
-
gr.Slider(minimum=1, maximum=
|
| 48 |
-
gr.Slider(minimum=0.1, maximum=
|
| 49 |
-
gr.Slider(
|
| 50 |
-
minimum=0.1,
|
| 51 |
-
maximum=1.0,
|
| 52 |
-
value=0.95,
|
| 53 |
-
step=0.05,
|
| 54 |
-
label="Top-p (nucleus sampling)",
|
| 55 |
-
),
|
| 56 |
],
|
| 57 |
-
title=f"
|
| 58 |
-
description="
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
|
| 9 |
+
# ================ 第一步:重新定义模型结构 (必须与训练时完全一致) ================
|
| 10 |
+
# 注意:这些类定义必须与你原始训练脚本中的完全相同
|
| 11 |
+
|
| 12 |
+
class GELU(nn.Module):
|
| 13 |
+
def __init__(self):
|
| 14 |
+
super().__init__()
|
| 15 |
+
def forward(self, x):
|
| 16 |
+
return 0.5 * x * (1 + torch.tanh(
|
| 17 |
+
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
| 18 |
+
(x + 0.044715 * torch.pow(x, 3))
|
| 19 |
+
))
|
| 20 |
+
|
| 21 |
+
class FeedForward(nn.Module):
|
| 22 |
+
def __init__(self, cfg):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.layers = nn.Sequential(
|
| 25 |
+
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
| 26 |
+
GELU(),
|
| 27 |
+
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
| 28 |
+
)
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
return self.layers(x)
|
| 31 |
+
|
| 32 |
+
class MultiHeadAttention(nn.Module):
|
| 33 |
+
def __init__(self, d_in, d_out,
|
| 34 |
+
context_length, dropout, num_heads, qkv_bias=False):
|
| 35 |
+
super().__init__()
|
| 36 |
+
assert (d_out % num_heads == 0), \
|
| 37 |
+
"d_out must be divisible by num_heads"
|
| 38 |
+
|
| 39 |
+
self.d_out = d_out
|
| 40 |
+
self.num_heads = num_heads
|
| 41 |
+
self.head_dim = d_out // num_heads
|
| 42 |
+
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
| 43 |
+
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
| 44 |
+
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
| 45 |
+
self.out_proj = nn.Linear(d_out, d_out)
|
| 46 |
+
self.dropout_p = dropout
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
b, num_tokens, d_in = x.shape
|
| 50 |
+
keys = self.W_key(x)
|
| 51 |
+
queries = self.W_query(x)
|
| 52 |
+
values = self.W_value(x)
|
| 53 |
+
|
| 54 |
+
# Transpose into [B, num_heads, num_tokens, head_dim] for SDPA
|
| 55 |
+
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
| 56 |
+
values = values.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
| 57 |
+
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
| 58 |
+
|
| 59 |
+
# Use F.scaled_dot_product_attention
|
| 60 |
+
context_vec = F.scaled_dot_product_attention(
|
| 61 |
+
queries, keys, values,
|
| 62 |
+
attn_mask=None,
|
| 63 |
+
dropout_p=self.dropout_p if self.training else 0.0,
|
| 64 |
+
is_causal=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Transpose back to [B, num_tokens, num_heads * head_dim] = [B, T, d_out]
|
| 68 |
+
context_vec = context_vec.transpose(1, 2).contiguous().view(b, num_tokens, self.d_out)
|
| 69 |
+
# Apply output projection
|
| 70 |
+
context_vec = self.out_proj(context_vec)
|
| 71 |
+
|
| 72 |
+
return context_vec
|
| 73 |
+
|
| 74 |
+
class LayerNorm(nn.Module):
|
| 75 |
+
def __init__(self, emb_dim):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.eps = 1e-5
|
| 78 |
+
self.scale = nn.Parameter(torch.ones(emb_dim))
|
| 79 |
+
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
mean = x.mean(dim=-1, keepdim=True)
|
| 83 |
+
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
| 84 |
+
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
| 85 |
+
return self.scale * norm_x + self.shift
|
| 86 |
+
|
| 87 |
+
class TransformerBlock(nn.Module):
|
| 88 |
+
def __init__(self, cfg):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.att = MultiHeadAttention(
|
| 91 |
+
d_in=cfg["emb_dim"],
|
| 92 |
+
d_out=cfg["emb_dim"],
|
| 93 |
+
context_length=cfg["context_length"],
|
| 94 |
+
num_heads=cfg["n_heads"],
|
| 95 |
+
dropout=cfg["drop_rate"],
|
| 96 |
+
qkv_bias=cfg["qkv_bias"])
|
| 97 |
+
self.ff = FeedForward(cfg)
|
| 98 |
+
self.norm1 = LayerNorm(cfg["emb_dim"])
|
| 99 |
+
self.norm2 = LayerNorm(cfg["emb_dim"])
|
| 100 |
+
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
shortcut = x
|
| 104 |
+
x = self.norm1(x)
|
| 105 |
+
x = self.att(x)
|
| 106 |
+
x = self.drop_shortcut(x)
|
| 107 |
+
x = x + shortcut
|
| 108 |
+
shortcut = x
|
| 109 |
+
x = self.norm2(x)
|
| 110 |
+
x = self.ff(x)
|
| 111 |
+
x = self.drop_shortcut(x)
|
| 112 |
+
x = x + shortcut
|
| 113 |
+
return x
|
| 114 |
+
|
| 115 |
+
class GPTModel(nn.Module):
|
| 116 |
+
def __init__(self, cfg):
|
| 117 |
+
super().__init__()
|
| 118 |
+
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
| 119 |
+
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
| 120 |
+
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
| 121 |
+
|
| 122 |
+
self.trf_blocks = nn.Sequential(
|
| 123 |
+
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
| 124 |
+
|
| 125 |
+
self.final_norm = LayerNorm(cfg["emb_dim"])
|
| 126 |
+
self.out_head = nn.Linear(
|
| 127 |
+
cfg["emb_dim"], cfg["vocab_size"], bias=False
|
| 128 |
+
)
|
| 129 |
+
def forward(self, in_idx):
|
| 130 |
+
batch_size, seq_len = in_idx.shape
|
| 131 |
+
tok_embeds = self.tok_emb(in_idx)
|
| 132 |
+
pos_embeds = self.pos_emb(
|
| 133 |
+
torch.arange(seq_len, device=in_idx.device)
|
| 134 |
+
)
|
| 135 |
+
x = tok_embeds + pos_embeds
|
| 136 |
+
x = self.drop_emb(x)
|
| 137 |
+
x = self.trf_blocks(x)
|
| 138 |
+
x = self.final_norm(x)
|
| 139 |
+
logits = self.out_head(x)
|
| 140 |
+
return logits
|
| 141 |
+
|
| 142 |
+
# 用于生成的函数
|
| 143 |
+
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
| 144 |
+
device = idx.device
|
| 145 |
+
current_device_type = str(device).split(':')[0]
|
| 146 |
+
|
| 147 |
+
for _ in range(max_new_tokens):
|
| 148 |
+
idx_cond = idx[:, -context_size:]
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
# 推理时不需要混合精度
|
| 151 |
+
logits = model(idx_cond)
|
| 152 |
+
logits = logits[:, -1, :]
|
| 153 |
+
probas = torch.softmax(logits, dim=-1)
|
| 154 |
+
idx_next = torch.argmax(probas, dim=-1, keepdim=True)
|
| 155 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 156 |
+
return idx
|
| 157 |
+
|
| 158 |
+
def text_to_token_ids(text, tokenizer):
|
| 159 |
+
encoded = tokenizer.encode(text)
|
| 160 |
+
encoded_tensor = torch.tensor(encoded).unsqueeze(0)
|
| 161 |
+
return encoded_tensor
|
| 162 |
+
|
| 163 |
+
def token_ids_to_text(token_ids, tokenizer):
|
| 164 |
+
flat = token_ids.squeeze(0)
|
| 165 |
+
return tokenizer.decode(flat.tolist(), skip_special_tokens=True)
|
| 166 |
+
|
| 167 |
+
# ================ 第二步:设置模型加载和推理 ================
|
| 168 |
+
|
| 169 |
+
# 模型 ID
|
| 170 |
model_id = "xingyu1996/tiger-gpt2"
|
| 171 |
+
|
| 172 |
+
# 从 Hugging Face Hub 下载模型权重文件
|
| 173 |
+
def load_model_from_hub():
|
| 174 |
+
print("开始从 Hugging Face Hub 下载模型权重...")
|
| 175 |
+
|
| 176 |
+
# 下载 pytorch_model.bin 文件
|
| 177 |
+
model_file = hf_hub_download(model_id, "pytorch_model.bin")
|
| 178 |
+
print(f"模型权重文件下载完成:{model_file}")
|
| 179 |
+
|
| 180 |
+
# 下载 config.json 文件
|
| 181 |
+
config_file = hf_hub_download(model_id, "config.json")
|
| 182 |
+
print(f"配置文件下载完成:{config_file}")
|
| 183 |
+
|
| 184 |
+
# 加载权重
|
| 185 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
| 186 |
+
|
| 187 |
+
# 加载配置
|
| 188 |
+
import json
|
| 189 |
+
with open(config_file, 'r') as f:
|
| 190 |
+
config = json.load(f)
|
| 191 |
+
|
| 192 |
+
# 将 Hugging Face 格式的配置转换为我们的格式
|
| 193 |
+
# 注意:这里的映射需要根据实际情况调整
|
| 194 |
+
my_config = {
|
| 195 |
+
"vocab_size": config.get("vocab_size", 50257),
|
| 196 |
+
"context_length": config.get("n_positions", 512),
|
| 197 |
+
"emb_dim": config.get("n_embd", 768),
|
| 198 |
+
"n_heads": config.get("n_head", 12),
|
| 199 |
+
"n_layers": config.get("n_layer", 12),
|
| 200 |
+
"drop_rate": config.get("resid_pdrop", 0.1),
|
| 201 |
+
"qkv_bias": config.get("qkv_bias", False),
|
| 202 |
}
|
| 203 |
|
| 204 |
+
# 创建模型
|
| 205 |
+
model = GPTModel(my_config)
|
| 206 |
+
|
| 207 |
+
# 加载权重到模型
|
| 208 |
+
# 检查状态字典中是否有 _orig_mod. 前缀
|
| 209 |
+
if any(k.startswith('_orig_mod.') for k in state_dict.keys()):
|
| 210 |
+
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
|
| 211 |
+
print("已去除权重中的 _orig_mod. 前缀")
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
# 加载权重
|
| 214 |
+
try:
|
| 215 |
+
model.load_state_dict(state_dict)
|
| 216 |
+
print("模型权重加载成功!")
|
| 217 |
+
except Exception as e:
|
| 218 |
+
print(f"模型权重加载失败: {e}")
|
| 219 |
+
# 尝试加载部分权重
|
| 220 |
+
model.load_state_dict(state_dict, strict=False)
|
| 221 |
+
print("模型已使用非严格模式加载权重,可能有部分参数没有加载。")
|
| 222 |
+
|
| 223 |
+
model.eval() # 设置为评估模式
|
| 224 |
+
return model, my_config
|
| 225 |
+
|
| 226 |
+
# 加载模型和分词器
|
| 227 |
+
print("正在初始化...")
|
| 228 |
+
model, config = load_model_from_hub()
|
| 229 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 230 |
+
print("模型和分词器加载完成!")
|
| 231 |
|
| 232 |
+
# ================ 第三步:设置 Gradio 接口 ================
|
| 233 |
+
|
| 234 |
+
def respond(message, history, max_tokens, temperature):
|
| 235 |
+
input_ids = text_to_token_ids(message, tokenizer).to("cpu") # Hugging Face Space 可能没有 GPU
|
| 236 |
+
context_size = config["context_length"]
|
| 237 |
+
|
| 238 |
+
try:
|
| 239 |
+
# 生成文本
|
| 240 |
+
output_ids = generate_text_simple(
|
| 241 |
+
model=model,
|
| 242 |
+
idx=input_ids,
|
| 243 |
+
max_new_tokens=max_tokens,
|
| 244 |
+
context_size=context_size
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# 解码生成的文本
|
| 248 |
+
full_text = token_ids_to_text(output_ids, tokenizer)
|
| 249 |
+
|
| 250 |
+
# 分离提示和生成部分
|
| 251 |
+
if message in full_text:
|
| 252 |
+
generated = full_text[len(message):]
|
| 253 |
+
else:
|
| 254 |
+
generated = full_text
|
| 255 |
+
|
| 256 |
+
return generated
|
| 257 |
+
except Exception as e:
|
| 258 |
+
print(f"生成过程中出错: {type(e).__name__} - {e}")
|
| 259 |
+
return f"抱歉,生成文本时出错: {type(e).__name__}"
|
| 260 |
|
| 261 |
+
# 创建 Gradio 界面
|
| 262 |
demo = gr.ChatInterface(
|
| 263 |
respond,
|
| 264 |
additional_inputs=[
|
| 265 |
+
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="生成长度"),
|
| 266 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="温度"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
],
|
| 268 |
+
title=f"Tiger-GPT2 推理测试",
|
| 269 |
+
description="输入中文文本,模型将生成后续内容。此演示直接加载了原始模型权重,与本地推理行为一致。",
|
| 270 |
)
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|