File size: 1,620 Bytes
86f3953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Project Submission

## Files Overview
1. **model\merge.ipynb** - Combines datasets into a single file.
2. **model\clean.ipynb** - Cleans and preprocesses the data.
3. **app.py** - Runs the main(streamlit) application.
4. **model\biobert.ipynb** - Implements BioBERT for feature extraction.
5. **model\biobert_embeddings.pt** - Generates, stores and processes embeddings.
6. **data\filtered_combined.xlsx** - Stores data post filteration and combining datasets for analysis.

## How to Reproduce the Results

### Step 1: Install Dependencies
Ensure you have Python installed. Run the following command to install required libraries:
```bash
pip install -r requirements.txt
```

### Step 2: Run the Application
Use the following command to execute the main application:
```bash
streamlit run app.py
```

### Application Screenshot
![Application Screenshot](image.jpg)


### Step 3: Reproducing the Functionality
The solution uses the following libraries for key functionalities:
- **NumPy and Pandas** for data preprocessing and manipulation.
- **scikit-learn** for machine learning pipelines and evaluation.
- **matplotlib** for visualizing results.
- **torch** for deep learning model implementation and training.
- **transformers** for leveraging pre-trained models and tokenization.
- **tqdm** for progress bar implementation to monitor loops and processes.

### Packaging the Solution
The final submission includes:
1. **Codebase** - All Python scripts mentioned above.
2. **Detailed PPT** - Explains the methodology, results, and conclusions.
3. **requirements.txt** - Lists all dependencies for reproducibility.