Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from transformers import AutoTokenizer, AutoModel
|
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
import numpy as np
|
| 11 |
import os
|
|
|
|
| 12 |
|
| 13 |
# Load the BioBERT model and tokenizer
|
| 14 |
@st.cache_resource
|
|
@@ -136,7 +137,32 @@ def main():
|
|
| 136 |
similar_trials.to_excel(output_file, index=False)
|
| 137 |
with open(output_file, "rb") as f:
|
| 138 |
st.download_button("Download Results as Excel", f, file_name="similar_trials_results.xlsx")
|
|
|
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
main()
|
|
|
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
import numpy as np
|
| 11 |
import os
|
| 12 |
+
from PIL import Image
|
| 13 |
|
| 14 |
# Load the BioBERT model and tokenizer
|
| 15 |
@st.cache_resource
|
|
|
|
| 137 |
similar_trials.to_excel(output_file, index=False)
|
| 138 |
with open(output_file, "rb") as f:
|
| 139 |
st.download_button("Download Results as Excel", f, file_name="similar_trials_results.xlsx")
|
| 140 |
+
st.title("Visualizations")
|
| 141 |
|
| 142 |
+
# t-SNE Plot Section
|
| 143 |
+
st.subheader("t-SNE Plot")
|
| 144 |
+
st.write(
|
| 145 |
+
"t-SNE (t-Distributed Stochastic Neighbor Embedding) is used to visualize high-dimensional embeddings in a lower-dimensional space, helping to identify clusters or patterns in the data."
|
| 146 |
+
)
|
| 147 |
+
tsne_image_path = "model/tsne_visualization.png" # Replace with the actual path to your t-SNE plot image
|
| 148 |
+
tsne_image = Image.open(tsne_image_path)
|
| 149 |
+
st.image(tsne_image, caption="t-SNE Plot")
|
| 150 |
+
|
| 151 |
+
st.markdown("---")
|
| 152 |
+
|
| 153 |
+
# Cosine Similarity Matrix Section
|
| 154 |
+
st.subheader("Cosine Similarity Matrix")
|
| 155 |
+
st.write(
|
| 156 |
+
"The cosine similarity matrix shows the similarity scores between different clinical trial embeddings, where higher scores indicate more similar trials."
|
| 157 |
+
)
|
| 158 |
+
cosine_matrix_image_path = "model/cosine_similarity.png" # Replace with the actual path to your cosine similarity matrix image
|
| 159 |
+
cosine_matrix_image = Image.open(cosine_matrix_image_path)
|
| 160 |
+
st.image(cosine_matrix_image, caption="Cosine Similarity Matrix")
|
| 161 |
+
|
| 162 |
+
st.markdown(
|
| 163 |
+
"### Reference\n"
|
| 164 |
+
"For more information, visit the [code files uploaded on Hugging Face](https://huggingface.co/spaces/yashgupta1512/nest/tree/main/model)."
|
| 165 |
+
)
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
main()
|