Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,27 +22,54 @@ logger = logging.get_logger(__name__)
|
|
| 22 |
|
| 23 |
|
| 24 |
class VibeVoiceDemo:
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
self.device = device
|
| 28 |
self.inference_steps = inference_steps
|
|
|
|
| 29 |
self.is_generating = False
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
self.available_voices = {}
|
| 33 |
-
|
|
|
|
| 34 |
self.setup_voice_presets()
|
| 35 |
self.load_example_scripts()
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
print(
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def setup_voice_presets(self):
|
| 48 |
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
|
@@ -69,153 +96,136 @@ class VibeVoiceDemo:
|
|
| 69 |
return np.array([])
|
| 70 |
|
| 71 |
@GPU(duration=60)
|
| 72 |
-
def generate_podcast(self,
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
"""
|
| 81 |
Generates a podcast as a single audio file from a script and saves it.
|
| 82 |
-
|
| 83 |
"""
|
| 84 |
try:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
self.
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
self.is_generating = True
|
| 94 |
-
|
| 95 |
if not script.strip():
|
| 96 |
raise gr.Error("Error: Please provide a script.")
|
| 97 |
-
|
| 98 |
-
# Defend against common mistake with apostrophes
|
| 99 |
script = script.replace("β", "'")
|
| 100 |
-
|
| 101 |
if not 1 <= num_speakers <= 4:
|
| 102 |
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
|
| 103 |
-
|
| 104 |
-
# 2. Collect and validate selected speakers
|
| 105 |
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 106 |
for i, speaker_name in enumerate(selected_speakers):
|
| 107 |
if not speaker_name or speaker_name not in self.available_voices:
|
| 108 |
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 109 |
-
|
| 110 |
-
# 3. Build initial log
|
| 111 |
log = f"ποΈ Generating podcast with {num_speakers} speakers\n"
|
|
|
|
| 112 |
log += f"π Parameters: CFG Scale={cfg_scale}\n"
|
| 113 |
log += f"π Speakers: {', '.join(selected_speakers)}\n"
|
| 114 |
-
|
| 115 |
-
# 4. Load voice samples
|
| 116 |
voice_samples = []
|
| 117 |
for speaker_name in selected_speakers:
|
| 118 |
audio_path = self.available_voices[speaker_name]
|
| 119 |
-
# Assuming self.read_audio is a method in your class that returns audio data
|
| 120 |
audio_data = self.read_audio(audio_path)
|
| 121 |
if len(audio_data) == 0:
|
| 122 |
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
|
| 123 |
voice_samples.append(audio_data)
|
| 124 |
-
|
| 125 |
log += f"β
Loaded {len(voice_samples)} voice samples\n"
|
| 126 |
-
|
| 127 |
-
# 5. Parse and format the script
|
| 128 |
lines = script.strip().split('\n')
|
| 129 |
formatted_script_lines = []
|
| 130 |
for line in lines:
|
| 131 |
line = line.strip()
|
| 132 |
if not line:
|
| 133 |
continue
|
| 134 |
-
|
| 135 |
-
# Check if line already has speaker format (e.g., "Speaker 1: ...")
|
| 136 |
if line.startswith('Speaker ') and ':' in line:
|
| 137 |
formatted_script_lines.append(line)
|
| 138 |
else:
|
| 139 |
-
# Auto-assign speakers in rotation
|
| 140 |
speaker_id = len(formatted_script_lines) % num_speakers
|
| 141 |
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 142 |
-
|
| 143 |
formatted_script = '\n'.join(formatted_script_lines)
|
| 144 |
log += f"π Formatted script with {len(formatted_script_lines)} turns\n"
|
| 145 |
log += "π Processing with VibeVoice...\n"
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# Assuming self.processor is an object available in your class
|
| 149 |
-
inputs = self.processor(
|
| 150 |
text=[formatted_script],
|
| 151 |
voice_samples=[voice_samples],
|
| 152 |
padding=True,
|
| 153 |
return_tensors="pt",
|
| 154 |
return_attention_mask=True,
|
| 155 |
)
|
| 156 |
-
|
| 157 |
-
# 7. Generate audio
|
| 158 |
start_time = time.time()
|
| 159 |
-
|
| 160 |
-
outputs = self.model.generate(
|
| 161 |
**inputs,
|
| 162 |
max_new_tokens=None,
|
| 163 |
cfg_scale=cfg_scale,
|
| 164 |
-
tokenizer=
|
| 165 |
generation_config={'do_sample': False},
|
| 166 |
-
verbose=False,
|
| 167 |
)
|
| 168 |
generation_time = time.time() - start_time
|
| 169 |
-
|
| 170 |
-
# 8. Extract audio output
|
| 171 |
-
# The generated audio is often in speech_outputs or a similar attribute
|
| 172 |
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
|
| 173 |
audio_tensor = outputs.speech_outputs[0]
|
| 174 |
audio = audio_tensor.cpu().float().numpy()
|
| 175 |
else:
|
| 176 |
raise gr.Error("β Error: No audio was generated by the model. Please try again.")
|
| 177 |
-
|
| 178 |
-
# Ensure audio is a 1D array
|
| 179 |
if audio.ndim > 1:
|
| 180 |
audio = audio.squeeze()
|
| 181 |
-
|
| 182 |
-
sample_rate = 24000
|
| 183 |
-
|
| 184 |
-
# 9. Save the audio file
|
| 185 |
output_dir = "outputs"
|
| 186 |
os.makedirs(output_dir, exist_ok=True)
|
| 187 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 188 |
file_path = os.path.join(output_dir, f"podcast_{timestamp}.wav")
|
| 189 |
-
|
| 190 |
-
# Write the NumPy array to a WAV file
|
| 191 |
sf.write(file_path, audio, sample_rate)
|
| 192 |
print(f"πΎ Podcast saved to {file_path}")
|
| 193 |
-
|
| 194 |
-
# 10. Finalize log and return
|
| 195 |
total_duration = len(audio) / sample_rate
|
| 196 |
log += f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 197 |
log += f"π΅ Final audio duration: {total_duration:.2f} seconds\n"
|
| 198 |
log += f"β
Successfully saved podcast to: {file_path}\n"
|
| 199 |
-
|
| 200 |
self.is_generating = False
|
| 201 |
return (sample_rate, audio), log
|
| 202 |
|
| 203 |
except gr.Error as e:
|
| 204 |
-
# Handle Gradio-specific errors (for user feedback)
|
| 205 |
self.is_generating = False
|
| 206 |
error_msg = f"β Input Error: {str(e)}"
|
| 207 |
print(error_msg)
|
| 208 |
-
# In Gradio, you would typically return an update to the UI
|
| 209 |
-
# For a pure function, we re-raise or handle it as needed.
|
| 210 |
-
# This return signature matches the success case but with error info.
|
| 211 |
return None, error_msg
|
| 212 |
-
|
| 213 |
except Exception as e:
|
| 214 |
-
# Handle all other unexpected errors
|
| 215 |
self.is_generating = False
|
| 216 |
error_msg = f"β An unexpected error occurred: {str(e)}"
|
| 217 |
print(error_msg)
|
| 218 |
-
import traceback
|
| 219 |
traceback.print_exc()
|
| 220 |
return None, error_msg
|
| 221 |
|
|
@@ -223,20 +233,55 @@ class VibeVoiceDemo:
|
|
| 223 |
|
| 224 |
|
| 225 |
def load_example_scripts(self):
|
|
|
|
| 226 |
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
| 227 |
self.example_scripts = []
|
|
|
|
|
|
|
| 228 |
if not os.path.exists(examples_dir):
|
|
|
|
| 229 |
return
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
| 232 |
for txt_file in txt_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
try:
|
| 234 |
-
with open(
|
| 235 |
script_content = f.read().strip()
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
except Exception as e:
|
| 239 |
-
print(f"Error loading {txt_file}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
|
| 242 |
def convert_to_16_bit_wav(data):
|
|
@@ -249,10 +294,202 @@ def convert_to_16_bit_wav(data):
|
|
| 249 |
|
| 250 |
|
| 251 |
def create_demo_interface(demo_instance: VibeVoiceDemo):
|
| 252 |
-
"""
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
with gr.Blocks(
|
| 258 |
title="VibeVoice - AI Podcast Generator",
|
|
@@ -263,27 +500,32 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 263 |
neutral_hue="slate",
|
| 264 |
)
|
| 265 |
) as interface:
|
| 266 |
-
|
| 267 |
-
# Header
|
| 268 |
gr.HTML("""
|
| 269 |
<div class="main-header">
|
| 270 |
<h1>ποΈ Vibe Podcasting</h1>
|
| 271 |
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
|
| 272 |
</div>
|
| 273 |
""")
|
| 274 |
-
|
| 275 |
with gr.Row():
|
| 276 |
-
# Left column - Settings
|
| 277 |
with gr.Column(scale=1, elem_classes="settings-card"):
|
| 278 |
-
gr.Markdown("### ποΈ
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
num_speakers = gr.Slider(
|
| 281 |
minimum=1, maximum=4, value=2, step=1,
|
| 282 |
label="Number of Speakers",
|
| 283 |
elem_classes="slider-container"
|
| 284 |
)
|
| 285 |
-
|
| 286 |
-
gr.Markdown("### π
|
| 287 |
available_speaker_names = list(demo_instance.available_voices.keys())
|
| 288 |
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
|
| 289 |
|
|
@@ -298,18 +540,17 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 298 |
elem_classes="speaker-item"
|
| 299 |
)
|
| 300 |
speaker_selections.append(speaker)
|
| 301 |
-
|
| 302 |
-
gr.Markdown("### βοΈ
|
| 303 |
with gr.Accordion("Generation Parameters", open=False):
|
| 304 |
cfg_scale = gr.Slider(
|
| 305 |
minimum=1.0, maximum=2.0, value=1.3, step=0.05,
|
| 306 |
label="CFG Scale (Guidance Strength)",
|
| 307 |
elem_classes="slider-container"
|
| 308 |
)
|
| 309 |
-
|
| 310 |
-
# Right column - Generation
|
| 311 |
with gr.Column(scale=2, elem_classes="generation-card"):
|
| 312 |
-
gr.Markdown("### π
|
| 313 |
script_input = gr.Textbox(
|
| 314 |
label="Conversation Script",
|
| 315 |
placeholder="Enter your podcast script here...",
|
|
@@ -317,7 +558,7 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 317 |
max_lines=20,
|
| 318 |
elem_classes="script-input"
|
| 319 |
)
|
| 320 |
-
|
| 321 |
with gr.Row():
|
| 322 |
random_example_btn = gr.Button(
|
| 323 |
"π² Random Example", size="lg",
|
|
@@ -327,9 +568,8 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 327 |
"π Generate Podcast", size="lg",
|
| 328 |
variant="primary", elem_classes="generate-btn", scale=2
|
| 329 |
)
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
gr.Markdown("### π΅ **Generated Podcast**")
|
| 333 |
complete_audio_output = gr.Audio(
|
| 334 |
label="Complete Podcast (Download)",
|
| 335 |
type="numpy",
|
|
@@ -338,28 +578,27 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 338 |
show_download_button=True,
|
| 339 |
visible=True
|
| 340 |
)
|
| 341 |
-
|
| 342 |
log_output = gr.Textbox(
|
| 343 |
label="Generation Log",
|
| 344 |
lines=8, max_lines=15,
|
| 345 |
interactive=False,
|
| 346 |
elem_classes="log-output"
|
| 347 |
)
|
| 348 |
-
|
| 349 |
-
# === logic ===
|
| 350 |
def update_speaker_visibility(num_speakers):
|
| 351 |
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
|
| 352 |
-
|
| 353 |
num_speakers.change(
|
| 354 |
fn=update_speaker_visibility,
|
| 355 |
inputs=[num_speakers],
|
| 356 |
outputs=speaker_selections
|
| 357 |
)
|
| 358 |
|
| 359 |
-
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
|
| 360 |
try:
|
| 361 |
speakers = speakers_and_params[:4]
|
| 362 |
-
|
| 363 |
audio, log = demo_instance.generate_podcast(
|
| 364 |
num_speakers=int(num_speakers),
|
| 365 |
script=script,
|
|
@@ -367,7 +606,8 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 367 |
speaker_2=speakers[1],
|
| 368 |
speaker_3=speakers[2],
|
| 369 |
speaker_4=speakers[3],
|
| 370 |
-
cfg_scale=
|
|
|
|
| 371 |
)
|
| 372 |
return audio, log
|
| 373 |
except Exception as e:
|
|
@@ -376,7 +616,7 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 376 |
|
| 377 |
generate_btn.click(
|
| 378 |
fn=generate_podcast_wrapper,
|
| 379 |
-
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
|
| 380 |
outputs=[complete_audio_output, log_output],
|
| 381 |
queue=True
|
| 382 |
)
|
|
@@ -397,8 +637,8 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 397 |
outputs=[num_speakers, script_input],
|
| 398 |
queue=False
|
| 399 |
)
|
| 400 |
-
|
| 401 |
-
gr.Markdown("### π
|
| 402 |
examples = getattr(demo_instance, "example_scripts", []) or [
|
| 403 |
[1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
|
| 404 |
]
|
|
@@ -412,14 +652,24 @@ def create_demo_interface(demo_instance: VibeVoiceDemo):
|
|
| 412 |
|
| 413 |
|
| 414 |
|
|
|
|
| 415 |
def run_demo(
|
| 416 |
-
|
| 417 |
device: str = "cuda",
|
| 418 |
inference_steps: int = 5,
|
| 419 |
share: bool = True,
|
| 420 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
set_seed(42)
|
| 422 |
-
demo_instance = VibeVoiceDemo(
|
| 423 |
interface = create_demo_interface(demo_instance)
|
| 424 |
interface.queue().launch(
|
| 425 |
share=share,
|
|
@@ -429,5 +679,6 @@ def run_demo(
|
|
| 429 |
)
|
| 430 |
|
| 431 |
|
|
|
|
| 432 |
if __name__ == "__main__":
|
| 433 |
run_demo()
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class VibeVoiceDemo:
|
| 25 |
+
def __init__(self, model_paths: dict, device: str = "cuda", inference_steps: int = 5):
|
| 26 |
+
"""
|
| 27 |
+
model_paths: dict like {"VibeVoice-1.5B": "microsoft/VibeVoice-1.5B",
|
| 28 |
+
"VibeVoice-1.1B": "microsoft/VibeVoice-1.1B"}
|
| 29 |
+
"""
|
| 30 |
+
self.model_paths = model_paths
|
| 31 |
self.device = device
|
| 32 |
self.inference_steps = inference_steps
|
| 33 |
+
|
| 34 |
self.is_generating = False
|
| 35 |
+
|
| 36 |
+
# Multi-model holders
|
| 37 |
+
self.models = {} # name -> model
|
| 38 |
+
self.processors = {} # name -> processor
|
| 39 |
+
self.current_model_name = None
|
| 40 |
+
|
| 41 |
self.available_voices = {}
|
| 42 |
+
|
| 43 |
+
self.load_models() # load all on CPU
|
| 44 |
self.setup_voice_presets()
|
| 45 |
self.load_example_scripts()
|
| 46 |
|
| 47 |
+
def load_models(self):
|
| 48 |
+
print("Loading processors and models on CPU...")
|
| 49 |
+
for name, path in self.model_paths.items():
|
| 50 |
+
print(f" - {name} from {path}")
|
| 51 |
+
proc = VibeVoiceProcessor.from_pretrained(path)
|
| 52 |
+
mdl = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 53 |
+
path, torch_dtype=torch.bfloat16
|
| 54 |
+
)
|
| 55 |
+
# Keep on CPU initially
|
| 56 |
+
self.processors[name] = proc
|
| 57 |
+
self.models[name] = mdl
|
| 58 |
+
# choose default
|
| 59 |
+
self.current_model_name = next(iter(self.models))
|
| 60 |
+
print(f"Default model is {self.current_model_name}")
|
| 61 |
+
|
| 62 |
+
def _place_model(self, target_name: str):
|
| 63 |
+
"""
|
| 64 |
+
Move the selected model to CUDA and push all others back to CPU.
|
| 65 |
+
"""
|
| 66 |
+
for name, mdl in self.models.items():
|
| 67 |
+
if name == target_name:
|
| 68 |
+
self.models[name] = mdl.to(self.device)
|
| 69 |
+
else:
|
| 70 |
+
self.models[name] = mdl.to("cpu")
|
| 71 |
+
self.current_model_name = target_name
|
| 72 |
+
print(f"Model {target_name} is now on {self.device}. Others moved to CPU.")
|
| 73 |
|
| 74 |
def setup_voice_presets(self):
|
| 75 |
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
|
|
|
| 96 |
return np.array([])
|
| 97 |
|
| 98 |
@GPU(duration=60)
|
| 99 |
+
def generate_podcast(self,
|
| 100 |
+
num_speakers: int,
|
| 101 |
+
script: str,
|
| 102 |
+
speaker_1: str = None,
|
| 103 |
+
speaker_2: str = None,
|
| 104 |
+
speaker_3: str = None,
|
| 105 |
+
speaker_4: str = None,
|
| 106 |
+
cfg_scale: float = 1.3,
|
| 107 |
+
model_name: str = None):
|
| 108 |
"""
|
| 109 |
Generates a podcast as a single audio file from a script and saves it.
|
| 110 |
+
Non-streaming.
|
| 111 |
"""
|
| 112 |
try:
|
| 113 |
+
# pick model
|
| 114 |
+
model_name = model_name or self.current_model_name
|
| 115 |
+
if model_name not in self.models:
|
| 116 |
+
raise gr.Error(f"Unknown model: {model_name}")
|
| 117 |
+
|
| 118 |
+
# place models on devices
|
| 119 |
+
self._place_model(model_name)
|
| 120 |
+
model = self.models[model_name]
|
| 121 |
+
processor = self.processors[model_name]
|
| 122 |
+
|
| 123 |
+
print(f"Using model {model_name} on {self.device}")
|
| 124 |
+
|
| 125 |
+
model.eval()
|
| 126 |
+
model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
| 127 |
+
|
| 128 |
self.is_generating = True
|
| 129 |
+
|
| 130 |
if not script.strip():
|
| 131 |
raise gr.Error("Error: Please provide a script.")
|
| 132 |
+
|
|
|
|
| 133 |
script = script.replace("β", "'")
|
| 134 |
+
|
| 135 |
if not 1 <= num_speakers <= 4:
|
| 136 |
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
|
| 137 |
+
|
|
|
|
| 138 |
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 139 |
for i, speaker_name in enumerate(selected_speakers):
|
| 140 |
if not speaker_name or speaker_name not in self.available_voices:
|
| 141 |
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 142 |
+
|
|
|
|
| 143 |
log = f"ποΈ Generating podcast with {num_speakers} speakers\n"
|
| 144 |
+
log += f"π§ Model: {model_name}\n"
|
| 145 |
log += f"π Parameters: CFG Scale={cfg_scale}\n"
|
| 146 |
log += f"π Speakers: {', '.join(selected_speakers)}\n"
|
| 147 |
+
|
|
|
|
| 148 |
voice_samples = []
|
| 149 |
for speaker_name in selected_speakers:
|
| 150 |
audio_path = self.available_voices[speaker_name]
|
|
|
|
| 151 |
audio_data = self.read_audio(audio_path)
|
| 152 |
if len(audio_data) == 0:
|
| 153 |
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
|
| 154 |
voice_samples.append(audio_data)
|
| 155 |
+
|
| 156 |
log += f"β
Loaded {len(voice_samples)} voice samples\n"
|
| 157 |
+
|
|
|
|
| 158 |
lines = script.strip().split('\n')
|
| 159 |
formatted_script_lines = []
|
| 160 |
for line in lines:
|
| 161 |
line = line.strip()
|
| 162 |
if not line:
|
| 163 |
continue
|
|
|
|
|
|
|
| 164 |
if line.startswith('Speaker ') and ':' in line:
|
| 165 |
formatted_script_lines.append(line)
|
| 166 |
else:
|
|
|
|
| 167 |
speaker_id = len(formatted_script_lines) % num_speakers
|
| 168 |
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 169 |
+
|
| 170 |
formatted_script = '\n'.join(formatted_script_lines)
|
| 171 |
log += f"π Formatted script with {len(formatted_script_lines)} turns\n"
|
| 172 |
log += "π Processing with VibeVoice...\n"
|
| 173 |
+
|
| 174 |
+
inputs = processor(
|
|
|
|
|
|
|
| 175 |
text=[formatted_script],
|
| 176 |
voice_samples=[voice_samples],
|
| 177 |
padding=True,
|
| 178 |
return_tensors="pt",
|
| 179 |
return_attention_mask=True,
|
| 180 |
)
|
| 181 |
+
|
|
|
|
| 182 |
start_time = time.time()
|
| 183 |
+
outputs = model.generate(
|
|
|
|
| 184 |
**inputs,
|
| 185 |
max_new_tokens=None,
|
| 186 |
cfg_scale=cfg_scale,
|
| 187 |
+
tokenizer=processor.tokenizer,
|
| 188 |
generation_config={'do_sample': False},
|
| 189 |
+
verbose=False,
|
| 190 |
)
|
| 191 |
generation_time = time.time() - start_time
|
| 192 |
+
|
|
|
|
|
|
|
| 193 |
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
|
| 194 |
audio_tensor = outputs.speech_outputs[0]
|
| 195 |
audio = audio_tensor.cpu().float().numpy()
|
| 196 |
else:
|
| 197 |
raise gr.Error("β Error: No audio was generated by the model. Please try again.")
|
| 198 |
+
|
|
|
|
| 199 |
if audio.ndim > 1:
|
| 200 |
audio = audio.squeeze()
|
| 201 |
+
|
| 202 |
+
sample_rate = 24000
|
| 203 |
+
|
|
|
|
| 204 |
output_dir = "outputs"
|
| 205 |
os.makedirs(output_dir, exist_ok=True)
|
| 206 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 207 |
file_path = os.path.join(output_dir, f"podcast_{timestamp}.wav")
|
|
|
|
|
|
|
| 208 |
sf.write(file_path, audio, sample_rate)
|
| 209 |
print(f"πΎ Podcast saved to {file_path}")
|
| 210 |
+
|
|
|
|
| 211 |
total_duration = len(audio) / sample_rate
|
| 212 |
log += f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 213 |
log += f"π΅ Final audio duration: {total_duration:.2f} seconds\n"
|
| 214 |
log += f"β
Successfully saved podcast to: {file_path}\n"
|
| 215 |
+
|
| 216 |
self.is_generating = False
|
| 217 |
return (sample_rate, audio), log
|
| 218 |
|
| 219 |
except gr.Error as e:
|
|
|
|
| 220 |
self.is_generating = False
|
| 221 |
error_msg = f"β Input Error: {str(e)}"
|
| 222 |
print(error_msg)
|
|
|
|
|
|
|
|
|
|
| 223 |
return None, error_msg
|
| 224 |
+
|
| 225 |
except Exception as e:
|
|
|
|
| 226 |
self.is_generating = False
|
| 227 |
error_msg = f"β An unexpected error occurred: {str(e)}"
|
| 228 |
print(error_msg)
|
|
|
|
| 229 |
traceback.print_exc()
|
| 230 |
return None, error_msg
|
| 231 |
|
|
|
|
| 233 |
|
| 234 |
|
| 235 |
def load_example_scripts(self):
|
| 236 |
+
"""Load example scripts from the text_examples directory."""
|
| 237 |
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
| 238 |
self.example_scripts = []
|
| 239 |
+
|
| 240 |
+
# Check if text_examples directory exists
|
| 241 |
if not os.path.exists(examples_dir):
|
| 242 |
+
print(f"Warning: text_examples directory not found at {examples_dir}")
|
| 243 |
return
|
| 244 |
+
|
| 245 |
+
# Get all .txt files in the text_examples directory
|
| 246 |
+
txt_files = sorted([f for f in os.listdir(examples_dir)
|
| 247 |
+
if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
|
| 248 |
+
|
| 249 |
for txt_file in txt_files:
|
| 250 |
+
file_path = os.path.join(examples_dir, txt_file)
|
| 251 |
+
|
| 252 |
+
import re
|
| 253 |
+
# Check if filename contains a time pattern like "45min", "90min", etc.
|
| 254 |
+
time_pattern = re.search(r'(\d+)min', txt_file.lower())
|
| 255 |
+
if time_pattern:
|
| 256 |
+
minutes = int(time_pattern.group(1))
|
| 257 |
+
if minutes > 15:
|
| 258 |
+
print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
|
| 259 |
+
continue
|
| 260 |
+
|
| 261 |
try:
|
| 262 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 263 |
script_content = f.read().strip()
|
| 264 |
+
|
| 265 |
+
# Remove empty lines and lines with only whitespace
|
| 266 |
+
script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
|
| 267 |
+
|
| 268 |
+
if not script_content:
|
| 269 |
+
continue
|
| 270 |
+
|
| 271 |
+
# Parse the script to determine number of speakers
|
| 272 |
+
num_speakers = self._get_num_speakers_from_script(script_content)
|
| 273 |
+
|
| 274 |
+
# Add to examples list as [num_speakers, script_content]
|
| 275 |
+
self.example_scripts.append([num_speakers, script_content])
|
| 276 |
+
print(f"Loaded example: {txt_file} with {num_speakers} speakers")
|
| 277 |
+
|
| 278 |
except Exception as e:
|
| 279 |
+
print(f"Error loading example script {txt_file}: {e}")
|
| 280 |
+
|
| 281 |
+
if self.example_scripts:
|
| 282 |
+
print(f"Successfully loaded {len(self.example_scripts)} example scripts")
|
| 283 |
+
else:
|
| 284 |
+
print("No example scripts were loaded")
|
| 285 |
|
| 286 |
|
| 287 |
def convert_to_16_bit_wav(data):
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
def create_demo_interface(demo_instance: VibeVoiceDemo):
|
| 297 |
+
custom_css = """ /* Modern light theme with gradients */
|
| 298 |
+
.gradio-container {
|
| 299 |
+
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
|
| 300 |
+
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
/* Header styling */
|
| 304 |
+
.main-header {
|
| 305 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 306 |
+
padding: 2rem;
|
| 307 |
+
border-radius: 20px;
|
| 308 |
+
margin-bottom: 2rem;
|
| 309 |
+
text-align: center;
|
| 310 |
+
box-shadow: 0 10px 40px rgba(102, 126, 234, 0.3);
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
.main-header h1 {
|
| 314 |
+
color: white;
|
| 315 |
+
font-size: 2.5rem;
|
| 316 |
+
font-weight: 700;
|
| 317 |
+
margin: 0;
|
| 318 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
.main-header p {
|
| 322 |
+
color: rgba(255,255,255,0.9);
|
| 323 |
+
font-size: 1.1rem;
|
| 324 |
+
margin: 0.5rem 0 0 0;
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
/* Card styling */
|
| 328 |
+
.settings-card, .generation-card {
|
| 329 |
+
background: rgba(255, 255, 255, 0.8);
|
| 330 |
+
backdrop-filter: blur(10px);
|
| 331 |
+
border: 1px solid rgba(226, 232, 240, 0.8);
|
| 332 |
+
border-radius: 16px;
|
| 333 |
+
padding: 1.5rem;
|
| 334 |
+
margin-bottom: 1rem;
|
| 335 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
/* Speaker selection styling */
|
| 339 |
+
.speaker-grid {
|
| 340 |
+
display: grid;
|
| 341 |
+
gap: 1rem;
|
| 342 |
+
margin-bottom: 1rem;
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
.speaker-item {
|
| 346 |
+
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
|
| 347 |
+
border: 1px solid rgba(148, 163, 184, 0.4);
|
| 348 |
+
border-radius: 12px;
|
| 349 |
+
padding: 1rem;
|
| 350 |
+
color: #374151;
|
| 351 |
+
font-weight: 500;
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
/* Streaming indicator */
|
| 355 |
+
.streaming-indicator {
|
| 356 |
+
display: inline-block;
|
| 357 |
+
width: 10px;
|
| 358 |
+
height: 10px;
|
| 359 |
+
background: #22c55e;
|
| 360 |
+
border-radius: 50%;
|
| 361 |
+
margin-right: 8px;
|
| 362 |
+
animation: pulse 1.5s infinite;
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
@keyframes pulse {
|
| 366 |
+
0% { opacity: 1; transform: scale(1); }
|
| 367 |
+
50% { opacity: 0.5; transform: scale(1.1); }
|
| 368 |
+
100% { opacity: 1; transform: scale(1); }
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
/* Queue status styling */
|
| 372 |
+
.queue-status {
|
| 373 |
+
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
|
| 374 |
+
border: 1px solid rgba(14, 165, 233, 0.3);
|
| 375 |
+
border-radius: 8px;
|
| 376 |
+
padding: 0.75rem;
|
| 377 |
+
margin: 0.5rem 0;
|
| 378 |
+
text-align: center;
|
| 379 |
+
font-size: 0.9rem;
|
| 380 |
+
color: #0369a1;
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
.generate-btn {
|
| 384 |
+
background: linear-gradient(135deg, #059669 0%, #0d9488 100%);
|
| 385 |
+
border: none;
|
| 386 |
+
border-radius: 12px;
|
| 387 |
+
padding: 1rem 2rem;
|
| 388 |
+
color: white;
|
| 389 |
+
font-weight: 600;
|
| 390 |
+
font-size: 1.1rem;
|
| 391 |
+
box-shadow: 0 4px 20px rgba(5, 150, 105, 0.4);
|
| 392 |
+
transition: all 0.3s ease;
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
.generate-btn:hover {
|
| 396 |
+
transform: translateY(-2px);
|
| 397 |
+
box-shadow: 0 6px 25px rgba(5, 150, 105, 0.6);
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
.stop-btn {
|
| 401 |
+
background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%);
|
| 402 |
+
border: none;
|
| 403 |
+
border-radius: 12px;
|
| 404 |
+
padding: 1rem 2rem;
|
| 405 |
+
color: white;
|
| 406 |
+
font-weight: 600;
|
| 407 |
+
font-size: 1.1rem;
|
| 408 |
+
box-shadow: 0 4px 20px rgba(239, 68, 68, 0.4);
|
| 409 |
+
transition: all 0.3s ease;
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
.stop-btn:hover {
|
| 413 |
+
transform: translateY(-2px);
|
| 414 |
+
box-shadow: 0 6px 25px rgba(239, 68, 68, 0.6);
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
/* Audio player styling */
|
| 418 |
+
.audio-output {
|
| 419 |
+
background: linear-gradient(135deg, #f1f5f9 0%, #e2e8f0 100%);
|
| 420 |
+
border-radius: 16px;
|
| 421 |
+
padding: 1.5rem;
|
| 422 |
+
border: 1px solid rgba(148, 163, 184, 0.3);
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
.complete-audio-section {
|
| 426 |
+
margin-top: 1rem;
|
| 427 |
+
padding: 1rem;
|
| 428 |
+
background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%);
|
| 429 |
+
border: 1px solid rgba(34, 197, 94, 0.3);
|
| 430 |
+
border-radius: 12px;
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
/* Text areas */
|
| 434 |
+
.script-input, .log-output {
|
| 435 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
| 436 |
+
border: 1px solid rgba(148, 163, 184, 0.4) !important;
|
| 437 |
+
border-radius: 12px !important;
|
| 438 |
+
color: #1e293b !important;
|
| 439 |
+
font-family: 'JetBrains Mono', monospace !important;
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
.script-input::placeholder {
|
| 443 |
+
color: #64748b !important;
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
/* Sliders */
|
| 447 |
+
.slider-container {
|
| 448 |
+
background: rgba(248, 250, 252, 0.8);
|
| 449 |
+
border: 1px solid rgba(226, 232, 240, 0.6);
|
| 450 |
+
border-radius: 8px;
|
| 451 |
+
padding: 1rem;
|
| 452 |
+
margin: 0.5rem 0;
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
/* Labels and text */
|
| 456 |
+
.gradio-container label {
|
| 457 |
+
color: #374151 !important;
|
| 458 |
+
font-weight: 600 !important;
|
| 459 |
+
}
|
| 460 |
+
|
| 461 |
+
.gradio-container .markdown {
|
| 462 |
+
color: #1f2937 !important;
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
/* Responsive design */
|
| 466 |
+
@media (max-width: 768px) {
|
| 467 |
+
.main-header h1 { font-size: 2rem; }
|
| 468 |
+
.settings-card, .generation-card { padding: 1rem; }
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
/* Random example button styling - more subtle professional color */
|
| 472 |
+
.random-btn {
|
| 473 |
+
background: linear-gradient(135deg, #64748b 0%, #475569 100%);
|
| 474 |
+
border: none;
|
| 475 |
+
border-radius: 12px;
|
| 476 |
+
padding: 1rem 1.5rem;
|
| 477 |
+
color: white;
|
| 478 |
+
font-weight: 600;
|
| 479 |
+
font-size: 1rem;
|
| 480 |
+
box-shadow: 0 4px 20px rgba(100, 116, 139, 0.3);
|
| 481 |
+
transition: all 0.3s ease;
|
| 482 |
+
display: inline-flex;
|
| 483 |
+
align-items: center;
|
| 484 |
+
gap: 0.5rem;
|
| 485 |
+
}
|
| 486 |
+
|
| 487 |
+
.random-btn:hover {
|
| 488 |
+
transform: translateY(-2px);
|
| 489 |
+
box-shadow: 0 6px 25px rgba(100, 116, 139, 0.4);
|
| 490 |
+
background: linear-gradient(135deg, #475569 0%, #334155 100%);
|
| 491 |
+
}
|
| 492 |
+
"""
|
| 493 |
|
| 494 |
with gr.Blocks(
|
| 495 |
title="VibeVoice - AI Podcast Generator",
|
|
|
|
| 500 |
neutral_hue="slate",
|
| 501 |
)
|
| 502 |
) as interface:
|
| 503 |
+
|
|
|
|
| 504 |
gr.HTML("""
|
| 505 |
<div class="main-header">
|
| 506 |
<h1>ποΈ Vibe Podcasting</h1>
|
| 507 |
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
|
| 508 |
</div>
|
| 509 |
""")
|
| 510 |
+
|
| 511 |
with gr.Row():
|
|
|
|
| 512 |
with gr.Column(scale=1, elem_classes="settings-card"):
|
| 513 |
+
gr.Markdown("### ποΈ Podcast Settings")
|
| 514 |
+
|
| 515 |
+
# NEW - model dropdown
|
| 516 |
+
model_dropdown = gr.Dropdown(
|
| 517 |
+
choices=list(demo_instance.models.keys()),
|
| 518 |
+
value=demo_instance.current_model_name,
|
| 519 |
+
label="Model",
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
num_speakers = gr.Slider(
|
| 523 |
minimum=1, maximum=4, value=2, step=1,
|
| 524 |
label="Number of Speakers",
|
| 525 |
elem_classes="slider-container"
|
| 526 |
)
|
| 527 |
+
|
| 528 |
+
gr.Markdown("### π Speaker Selection")
|
| 529 |
available_speaker_names = list(demo_instance.available_voices.keys())
|
| 530 |
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
|
| 531 |
|
|
|
|
| 540 |
elem_classes="speaker-item"
|
| 541 |
)
|
| 542 |
speaker_selections.append(speaker)
|
| 543 |
+
|
| 544 |
+
gr.Markdown("### βοΈ Advanced Settings")
|
| 545 |
with gr.Accordion("Generation Parameters", open=False):
|
| 546 |
cfg_scale = gr.Slider(
|
| 547 |
minimum=1.0, maximum=2.0, value=1.3, step=0.05,
|
| 548 |
label="CFG Scale (Guidance Strength)",
|
| 549 |
elem_classes="slider-container"
|
| 550 |
)
|
| 551 |
+
|
|
|
|
| 552 |
with gr.Column(scale=2, elem_classes="generation-card"):
|
| 553 |
+
gr.Markdown("### π Script Input")
|
| 554 |
script_input = gr.Textbox(
|
| 555 |
label="Conversation Script",
|
| 556 |
placeholder="Enter your podcast script here...",
|
|
|
|
| 558 |
max_lines=20,
|
| 559 |
elem_classes="script-input"
|
| 560 |
)
|
| 561 |
+
|
| 562 |
with gr.Row():
|
| 563 |
random_example_btn = gr.Button(
|
| 564 |
"π² Random Example", size="lg",
|
|
|
|
| 568 |
"π Generate Podcast", size="lg",
|
| 569 |
variant="primary", elem_classes="generate-btn", scale=2
|
| 570 |
)
|
| 571 |
+
|
| 572 |
+
gr.Markdown("### π΅ Generated Podcast")
|
|
|
|
| 573 |
complete_audio_output = gr.Audio(
|
| 574 |
label="Complete Podcast (Download)",
|
| 575 |
type="numpy",
|
|
|
|
| 578 |
show_download_button=True,
|
| 579 |
visible=True
|
| 580 |
)
|
| 581 |
+
|
| 582 |
log_output = gr.Textbox(
|
| 583 |
label="Generation Log",
|
| 584 |
lines=8, max_lines=15,
|
| 585 |
interactive=False,
|
| 586 |
elem_classes="log-output"
|
| 587 |
)
|
| 588 |
+
|
|
|
|
| 589 |
def update_speaker_visibility(num_speakers):
|
| 590 |
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
|
| 591 |
+
|
| 592 |
num_speakers.change(
|
| 593 |
fn=update_speaker_visibility,
|
| 594 |
inputs=[num_speakers],
|
| 595 |
outputs=speaker_selections
|
| 596 |
)
|
| 597 |
|
| 598 |
+
def generate_podcast_wrapper(model_choice, num_speakers, script, *speakers_and_params):
|
| 599 |
try:
|
| 600 |
speakers = speakers_and_params[:4]
|
| 601 |
+
cfg_scale_val = speakers_and_params[4]
|
| 602 |
audio, log = demo_instance.generate_podcast(
|
| 603 |
num_speakers=int(num_speakers),
|
| 604 |
script=script,
|
|
|
|
| 606 |
speaker_2=speakers[1],
|
| 607 |
speaker_3=speakers[2],
|
| 608 |
speaker_4=speakers[3],
|
| 609 |
+
cfg_scale=cfg_scale_val,
|
| 610 |
+
model_name=model_choice
|
| 611 |
)
|
| 612 |
return audio, log
|
| 613 |
except Exception as e:
|
|
|
|
| 616 |
|
| 617 |
generate_btn.click(
|
| 618 |
fn=generate_podcast_wrapper,
|
| 619 |
+
inputs=[model_dropdown, num_speakers, script_input] + speaker_selections + [cfg_scale],
|
| 620 |
outputs=[complete_audio_output, log_output],
|
| 621 |
queue=True
|
| 622 |
)
|
|
|
|
| 637 |
outputs=[num_speakers, script_input],
|
| 638 |
queue=False
|
| 639 |
)
|
| 640 |
+
|
| 641 |
+
gr.Markdown("### π Example Scripts")
|
| 642 |
examples = getattr(demo_instance, "example_scripts", []) or [
|
| 643 |
[1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
|
| 644 |
]
|
|
|
|
| 652 |
|
| 653 |
|
| 654 |
|
| 655 |
+
|
| 656 |
def run_demo(
|
| 657 |
+
model_paths: dict = None,
|
| 658 |
device: str = "cuda",
|
| 659 |
inference_steps: int = 5,
|
| 660 |
share: bool = True,
|
| 661 |
):
|
| 662 |
+
"""
|
| 663 |
+
model_paths default includes two entries. Replace paths as needed.
|
| 664 |
+
"""
|
| 665 |
+
if model_paths is None:
|
| 666 |
+
model_paths = {
|
| 667 |
+
"VibeVoice-Large": "microsoft/VibeVoice-Large",
|
| 668 |
+
"VibeVoice-1.1B": "microsoft/VibeVoice-1.1B"
|
| 669 |
+
}
|
| 670 |
+
|
| 671 |
set_seed(42)
|
| 672 |
+
demo_instance = VibeVoiceDemo(model_paths, device, inference_steps)
|
| 673 |
interface = create_demo_interface(demo_instance)
|
| 674 |
interface.queue().launch(
|
| 675 |
share=share,
|
|
|
|
| 679 |
)
|
| 680 |
|
| 681 |
|
| 682 |
+
|
| 683 |
if __name__ == "__main__":
|
| 684 |
run_demo()
|