Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import BlipForQuestionAnswering, BlipProcessor | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
| model_vqa = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(device) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| def inference(raw_image, question, decoding_strategy): | |
| inputs = processor(images=raw_image, text=question,return_tensors="pt") | |
| if decoding_strategy == "Beam search": | |
| inputs["max_length"] = 20 | |
| inputs["num_beams"] = 5 | |
| elif decoding_strategy == "Nucleus sampling": | |
| inputs["max_length"] = 20 | |
| inputs["num_beams"] = 1 | |
| inputs["do_sample"] = True | |
| inputs["top_k"] = 50 | |
| inputs["top_p"] = 0.95 | |
| out = model_vqa.generate(**inputs) | |
| return processor.batch_decode(out, skip_special_tokens=True)[0] | |
| inputs = [ | |
| gr.inputs.Image(type='pil'), | |
| gr.inputs.Textbox(lines=2, label="Question"), | |
| gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy") | |
| ] | |
| outputs = gr.outputs.Textbox(label="Output") | |
| title = "BLIP" | |
| description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>" | |
| gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True) |