Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import PIL.Image | |
| import numpy as np | |
| import gradio as gr | |
| from yarg import get | |
| from models.stylegan_generator import StyleGANGenerator | |
| from models.stylegan2_generator import StyleGAN2Generator | |
| VALID_CHOICES = [ | |
| "Bald", | |
| "Young", | |
| "Mustache", | |
| "Eyeglasses", | |
| "Hat", | |
| "Smiling" | |
| ] | |
| ENABLE_GPU = False | |
| MODEL_NAMES = [ | |
| 'stylegan_ffhq', | |
| 'stylegan2_ffhq' | |
| ] | |
| NB_IMG = 4 | |
| OUTPUT_LIST = [gr.outputs.Image(type="pil", label="Generated Image") for _ in range(NB_IMG)] + [gr.outputs.Image(type="pil", label="Modified Image") for _ in range(NB_IMG)] | |
| def tensor_to_pil(input_object): | |
| """Shows images in one figure.""" | |
| if isinstance(input_object, dict): | |
| im_array = [] | |
| images = input_object['image'] | |
| else: | |
| images = input_object | |
| for _, image in enumerate(images): | |
| im_array.append(PIL.Image.fromarray(image)) | |
| return im_array | |
| def get_generator(model_name): | |
| if model_name == 'stylegan_ffhq': | |
| generator = StyleGANGenerator(model_name) | |
| elif model_name == 'stylegan2_ffhq': | |
| generator = StyleGAN2Generator(model_name) | |
| else: | |
| raise ValueError('Model name not recognized') | |
| if ENABLE_GPU: | |
| generator = generator.cuda() | |
| return generator | |
| def inference(seed, choice, model_name, coef, nb_images=NB_IMG): | |
| np.random.seed(seed) | |
| boundary = np.squeeze(np.load(open(os.path.join('boundaries', model_name, 'boundary_%s.npy' % choice), 'rb'))) | |
| generator = get_generator(model_name) | |
| latent_codes = generator.easy_sample(nb_images) | |
| if ENABLE_GPU: | |
| latent_codes = latent_codes.cuda() | |
| generator = generator.cuda() | |
| generated_images = generator.easy_synthesize(latent_codes) | |
| generated_images = tensor_to_pil(generated_images) | |
| new_latent_codes = latent_codes.copy() | |
| for i, _ in enumerate(generated_images): | |
| new_latent_codes[i, :] += boundary*coef | |
| modified_generated_images = generator.easy_synthesize(new_latent_codes) | |
| modified_generated_images = tensor_to_pil(modified_generated_images) | |
| return generated_images + modified_generated_images | |
| iface = gr.Interface( | |
| fn=inference, | |
| inputs=[ | |
| gr.inputs.Slider( | |
| minimum=0, | |
| maximum=1000, | |
| step=1, | |
| default=264, | |
| ), | |
| gr.inputs.Dropdown( | |
| choices=VALID_CHOICES, | |
| type="value", | |
| ), | |
| gr.inputs.Dropdown( | |
| choices=MODEL_NAMES, | |
| type="value", | |
| ), | |
| gr.inputs.Slider( | |
| minimum=-3, | |
| maximum=3, | |
| step=0.1, | |
| default=0, | |
| ), | |
| ], | |
| outputs=OUTPUT_LIST, | |
| layout="horizontal", | |
| theme="peach" | |
| ) | |
| iface.launch() |