Spaces:
Runtime error
Runtime error
| # python3.7 | |
| """Contains the generator class of StyleGAN. | |
| Basically, this class is derived from the `BaseGenerator` class defined in | |
| `base_generator.py`. | |
| """ | |
| import os | |
| import numpy as np | |
| import pickle | |
| from PIL import Image | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from . import model_settings | |
| from .stylegan3_official_network import StyleGAN3GeneratorModel | |
| from .base_generator import BaseGenerator | |
| __all__ = ['StyleGANGenerator'] | |
| def make_transform(translate: Tuple[float,float], angle: float): | |
| m = np.eye(3) | |
| s = np.sin(angle/360.0*np.pi*2) | |
| c = np.cos(angle/360.0*np.pi*2) | |
| m[0][0] = c | |
| m[0][1] = s | |
| m[0][2] = translate[0] | |
| m[1][0] = -s | |
| m[1][1] = c | |
| m[1][2] = translate[1] | |
| return m | |
| class StyleGAN3Generator(BaseGenerator): | |
| """Defines the generator class of StyleGAN. | |
| Different from conventional GAN, StyleGAN introduces a disentangled latent | |
| space (i.e., W space) besides the normal latent space (i.e., Z space). Then, | |
| the disentangled latent code, w, is fed into each convolutional layer to | |
| modulate the `style` of the synthesis through AdaIN (Adaptive Instance | |
| Normalization) layer. Normally, the w's fed into all layers are the same. But, | |
| they can actually be different to make different layers get different styles. | |
| Accordingly, an extended space (i.e. W+ space) is used to gather all w's | |
| together. Taking the official StyleGAN model trained on FF-HQ dataset as an | |
| instance, there are | |
| (1) Z space, with dimension (512,) | |
| (2) W space, with dimension (512,) | |
| (3) W+ space, with dimension (18, 512) | |
| """ | |
| def __init__(self, model_name, logger=None): | |
| self.truncation_psi = model_settings.STYLEGAN_TRUNCATION_PSI | |
| self.truncation_layers = model_settings.STYLEGAN_TRUNCATION_LAYERS | |
| self.randomize_noise = model_settings.STYLEGAN_RANDOMIZE_NOISE | |
| self.model_specific_vars = ['truncation.truncation'] | |
| super().__init__(model_name, logger) | |
| self.num_layers = (int(np.log2(self.resolution)) - 1) * 2 | |
| assert self.gan_type in ['stylegan3', 'stylegan2'] | |
| def build(self): | |
| self.check_attr('w_space_dim') | |
| self.check_attr('fused_scale') | |
| self.model = StyleGAN3GeneratorModel( | |
| img_resolution=self.resolution, | |
| w_dim=self.w_space_dim, | |
| z_dim=self.latent_space_dim, | |
| c_dim=self.c_space_dim, | |
| img_channels=3 | |
| ) | |
| def load(self): | |
| self.logger.info(f'Loading pytorch model from `{self.model_path}`.') | |
| with open(self.model_path, 'rb') as f: | |
| self.model = pickle.load(f)['G_ema'] | |
| self.logger.info(f'Successfully loaded!') | |
| # self.lod = self.model.synthesis.lod.to(self.cpu_device).tolist() | |
| # self.logger.info(f' `lod` of the loaded model is {self.lod}.') | |
| def sample(self, num, latent_space_type='Z'): | |
| """Samples latent codes randomly. | |
| Args: | |
| num: Number of latent codes to sample. Should be positive. | |
| latent_space_type: Type of latent space from which to sample latent code. | |
| Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
| Returns: | |
| A `numpy.ndarray` as sampled latend codes. | |
| Raises: | |
| ValueError: If the given `latent_space_type` is not supported. | |
| """ | |
| latent_space_type = latent_space_type.upper() | |
| if latent_space_type == 'Z': | |
| latent_codes = np.random.randn(num, self.latent_space_dim) | |
| elif latent_space_type == 'W': | |
| latent_codes = np.random.randn(num, self.w_space_dim) | |
| elif latent_space_type == 'WP': | |
| latent_codes = np.random.randn(num, self.num_layers, self.w_space_dim) | |
| else: | |
| raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') | |
| return latent_codes.astype(np.float32) | |
| def preprocess(self, latent_codes, latent_space_type='Z'): | |
| """Preprocesses the input latent code if needed. | |
| Args: | |
| latent_codes: The input latent codes for preprocessing. | |
| latent_space_type: Type of latent space to which the latent codes belong. | |
| Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
| Returns: | |
| The preprocessed latent codes which can be used as final input for the | |
| generator. | |
| Raises: | |
| ValueError: If the given `latent_space_type` is not supported. | |
| """ | |
| if not isinstance(latent_codes, np.ndarray): | |
| raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
| latent_space_type = latent_space_type.upper() | |
| if latent_space_type == 'Z': | |
| latent_codes = latent_codes.reshape(-1, self.latent_space_dim) | |
| norm = np.linalg.norm(latent_codes, axis=1, keepdims=True) | |
| latent_codes = latent_codes / norm * np.sqrt(self.latent_space_dim) | |
| elif latent_space_type == 'W': | |
| latent_codes = latent_codes.reshape(-1, self.w_space_dim) | |
| elif latent_space_type == 'WP': | |
| latent_codes = latent_codes.reshape(-1, self.num_layers, self.w_space_dim) | |
| else: | |
| raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') | |
| return latent_codes.astype(np.float32) | |
| def easy_sample(self, num, latent_space_type='Z'): | |
| return self.sample(num, latent_space_type) | |
| def synthesize(self, | |
| latent_codes, | |
| latent_space_type='Z', | |
| generate_style=False, | |
| generate_image=True): | |
| """Synthesizes images with given latent codes. | |
| One can choose whether to generate the layer-wise style codes. | |
| Args: | |
| latent_codes: Input latent codes for image synthesis. | |
| latent_space_type: Type of latent space to which the latent codes belong. | |
| Only [`Z`, `W`, `WP`] are supported. Case insensitive. (default: `Z`) | |
| generate_style: Whether to generate the layer-wise style codes. (default: | |
| False) | |
| generate_image: Whether to generate the final image synthesis. (default: | |
| True) | |
| Returns: | |
| A dictionary whose values are raw outputs from the generator. | |
| """ | |
| if not isinstance(latent_codes, np.ndarray): | |
| raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
| results = {} | |
| translate = (0,0) | |
| rotate=0.0 | |
| z = torch.from_numpy(latent_codes).to(self.run_device) | |
| label = torch.zeros([1, self.c_space_dim]).to(self.run_device) | |
| if hasattr(self.model.synthesis, 'input'): | |
| m = make_transform(translate, rotate) | |
| m = np.linalg.inv(m) | |
| self.model.synthesis.input.transform.copy_(torch.from_numpy(m)) | |
| ws = self.model.mapping(z, label) | |
| #wps = self.model.truncation(w) | |
| img = self.model(z, label) | |
| img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
| img = img.cpu().numpy() | |
| results['image'] = img | |
| results['z'] = latent_codes | |
| results['w'] = ws.detach().cpu().numpy() | |
| #results['wp'] = wps.detach().cpu().numpy() | |
| return results | |