Spaces:
Runtime error
Runtime error
add new files
Browse files- app.py +23 -54
- boundaries/stylegan_ffhq/boundary_Beard.npy +0 -0
- boundaries/stylegan_ffhq/boundary_Gender.npy +0 -0
- utils/constants.py +25 -0
- utils/image_manip.py +19 -0
app.py
CHANGED
|
@@ -9,43 +9,8 @@ from yarg import get
|
|
| 9 |
from models.stylegan_generator import StyleGANGenerator
|
| 10 |
from models.stylegan2_generator import StyleGAN2Generator
|
| 11 |
|
| 12 |
-
VALID_CHOICES
|
| 13 |
-
|
| 14 |
-
"Young",
|
| 15 |
-
"Mustache",
|
| 16 |
-
"Eyeglasses",
|
| 17 |
-
"Hat",
|
| 18 |
-
"Smiling"
|
| 19 |
-
]
|
| 20 |
-
ENABLE_GPU = False
|
| 21 |
-
MODEL_NAMES = [
|
| 22 |
-
'stylegan_ffhq',
|
| 23 |
-
'stylegan2_ffhq'
|
| 24 |
-
]
|
| 25 |
-
NB_IMG = 4
|
| 26 |
-
OUTPUT_LIST = [
|
| 27 |
-
gr.outputs.Image(type="pil", label="Generated Image") for _ in range(NB_IMG)
|
| 28 |
-
] + [
|
| 29 |
-
gr.outputs.Image(type="pil", label="Modified Image") for _ in range(NB_IMG)
|
| 30 |
-
]
|
| 31 |
-
description = """
|
| 32 |
-
<p>
|
| 33 |
-
<center>
|
| 34 |
-
This is an interactive demo of the CVPR2020 InterfaceGAN paper, by adding other attributes such as Hat, Bald, etc. />
|
| 35 |
-
</center>
|
| 36 |
-
</p>
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
def tensor_to_pil(input_object):
|
| 40 |
-
"""Shows images in one figure."""
|
| 41 |
-
if isinstance(input_object, dict):
|
| 42 |
-
im_array = []
|
| 43 |
-
images = input_object['image']
|
| 44 |
-
else:
|
| 45 |
-
images = input_object
|
| 46 |
-
for _, image in enumerate(images):
|
| 47 |
-
im_array.append(PIL.Image.fromarray(image))
|
| 48 |
-
return im_array
|
| 49 |
|
| 50 |
def get_generator(model_name):
|
| 51 |
if model_name == 'stylegan_ffhq':
|
|
@@ -58,12 +23,16 @@ def get_generator(model_name):
|
|
| 58 |
generator = generator.cuda()
|
| 59 |
return generator
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
@torch.no_grad()
|
| 62 |
-
def inference(seed,
|
|
|
|
| 63 |
np.random.seed(seed)
|
| 64 |
-
|
| 65 |
-
boundary = np.squeeze(np.load(open(os.path.join('boundaries', model_name, 'boundary_%s.npy' % choice), 'rb')))
|
| 66 |
-
generator = get_generator(model_name)
|
| 67 |
latent_codes = generator.easy_sample(nb_images)
|
| 68 |
if ENABLE_GPU:
|
| 69 |
latent_codes = latent_codes.cuda()
|
|
@@ -73,13 +42,15 @@ def inference(seed, choice, model_name, coef, nb_images=NB_IMG):
|
|
| 73 |
|
| 74 |
new_latent_codes = latent_codes.copy()
|
| 75 |
for i, _ in enumerate(generated_images):
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
modified_generated_images = generator.easy_synthesize(new_latent_codes)
|
| 79 |
modified_generated_images = tensor_to_pil(modified_generated_images)
|
| 80 |
|
| 81 |
-
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
iface = gr.Interface(
|
| 85 |
fn=inference,
|
|
@@ -88,19 +59,9 @@ iface = gr.Interface(
|
|
| 88 |
minimum=0,
|
| 89 |
maximum=1000,
|
| 90 |
step=1,
|
| 91 |
-
default=
|
| 92 |
label="Random seed to use for the generation"
|
| 93 |
),
|
| 94 |
-
gr.inputs.Dropdown(
|
| 95 |
-
choices=VALID_CHOICES,
|
| 96 |
-
type="value",
|
| 97 |
-
label="Attribute to modify",
|
| 98 |
-
),
|
| 99 |
-
gr.inputs.Dropdown(
|
| 100 |
-
choices=MODEL_NAMES,
|
| 101 |
-
type="value",
|
| 102 |
-
label="Model to use",
|
| 103 |
-
),
|
| 104 |
gr.inputs.Slider(
|
| 105 |
minimum=-3,
|
| 106 |
maximum=3,
|
|
@@ -108,6 +69,14 @@ iface = gr.Interface(
|
|
| 108 |
default=0,
|
| 109 |
label="Modification coefficient",
|
| 110 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
],
|
| 112 |
outputs=OUTPUT_LIST,
|
| 113 |
layout="horizontal",
|
|
|
|
| 9 |
from models.stylegan_generator import StyleGANGenerator
|
| 10 |
from models.stylegan2_generator import StyleGAN2Generator
|
| 11 |
|
| 12 |
+
from utils.constants import VALID_CHOICES, ENABLE_GPU, MODEL_NAME, OUTPUT_LIST, description
|
| 13 |
+
from utils.image_manip import tensor_to_pil, concat_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def get_generator(model_name):
|
| 16 |
if model_name == 'stylegan_ffhq':
|
|
|
|
| 23 |
generator = generator.cuda()
|
| 24 |
return generator
|
| 25 |
|
| 26 |
+
generator = get_generator(MODEL_NAME)
|
| 27 |
+
boundaries = {
|
| 28 |
+
boundary:np.squeeze(np.load(open(os.path.join('boundaries', MODEL_NAME, 'boundary_%s.npy' % boundary), 'rb')))
|
| 29 |
+
for boundary in VALID_CHOICES
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
@torch.no_grad()
|
| 33 |
+
def inference(seed, coef, nb_images, list_choices):
|
| 34 |
+
global generator, boundaries
|
| 35 |
np.random.seed(seed)
|
|
|
|
|
|
|
|
|
|
| 36 |
latent_codes = generator.easy_sample(nb_images)
|
| 37 |
if ENABLE_GPU:
|
| 38 |
latent_codes = latent_codes.cuda()
|
|
|
|
| 42 |
|
| 43 |
new_latent_codes = latent_codes.copy()
|
| 44 |
for i, _ in enumerate(generated_images):
|
| 45 |
+
for choice in list_choices:
|
| 46 |
+
new_latent_codes[i, :] += boundaries[choice]*coef
|
| 47 |
|
| 48 |
modified_generated_images = generator.easy_synthesize(new_latent_codes)
|
| 49 |
modified_generated_images = tensor_to_pil(modified_generated_images)
|
| 50 |
|
| 51 |
+
concatenated_output = concat_images(generated_images, modified_generated_images)
|
| 52 |
|
| 53 |
+
return concatenated_output
|
| 54 |
|
| 55 |
iface = gr.Interface(
|
| 56 |
fn=inference,
|
|
|
|
| 59 |
minimum=0,
|
| 60 |
maximum=1000,
|
| 61 |
step=1,
|
| 62 |
+
default=644,
|
| 63 |
label="Random seed to use for the generation"
|
| 64 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
gr.inputs.Slider(
|
| 66 |
minimum=-3,
|
| 67 |
maximum=3,
|
|
|
|
| 69 |
default=0,
|
| 70 |
label="Modification coefficient",
|
| 71 |
),
|
| 72 |
+
gr.inputs.Slider(
|
| 73 |
+
minimum=1,
|
| 74 |
+
maximum=10,
|
| 75 |
+
step=1,
|
| 76 |
+
default=2,
|
| 77 |
+
label="Number of images to generate",
|
| 78 |
+
),
|
| 79 |
+
gr.inputs.CheckboxGroup(VALID_CHOICES, default=[], type="value", label=None, optional=False)
|
| 80 |
],
|
| 81 |
outputs=OUTPUT_LIST,
|
| 82 |
layout="horizontal",
|
boundaries/stylegan_ffhq/boundary_Beard.npy
ADDED
|
Binary file (2.18 kB). View file
|
|
|
boundaries/stylegan_ffhq/boundary_Gender.npy
ADDED
|
Binary file (2.18 kB). View file
|
|
|
utils/constants.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
VALID_CHOICES = [
|
| 4 |
+
"Bald",
|
| 5 |
+
"Young",
|
| 6 |
+
"Mustache",
|
| 7 |
+
"Eyeglasses",
|
| 8 |
+
"Hat",
|
| 9 |
+
"Smiling",
|
| 10 |
+
"Gender",
|
| 11 |
+
"Beard"
|
| 12 |
+
]
|
| 13 |
+
ENABLE_GPU = False
|
| 14 |
+
MODEL_NAME = "stylegan_ffhq"
|
| 15 |
+
OUTPUT_LIST = [
|
| 16 |
+
gr.outputs.Image(type="pil", label="Generated Images"),
|
| 17 |
+
gr.outputs.Image(type="pil", label="Modified Images"),
|
| 18 |
+
]
|
| 19 |
+
description = """
|
| 20 |
+
<p>
|
| 21 |
+
<center>
|
| 22 |
+
This is an interactive demo of the CVPR2020 InterfaceGAN paper, by adding other attributes such as Hat, Bald, etc.
|
| 23 |
+
</center>
|
| 24 |
+
</p>
|
| 25 |
+
"""
|
utils/image_manip.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import PIL
|
| 3 |
+
|
| 4 |
+
def concat_images(generated_images, modified_generated_images):
|
| 5 |
+
"""Shows images in one figure."""
|
| 6 |
+
concatenated_array_genenerated_images = np.concatenate([np.array(image) for image in generated_images], axis=1)
|
| 7 |
+
concatenated_array_modified_generated_images = np.concatenate([np.array(image) for image in modified_generated_images], axis=1)
|
| 8 |
+
|
| 9 |
+
return [PIL.Image.fromarray(concatenated_array_genenerated_images), PIL.Image.fromarray(concatenated_array_modified_generated_images)]
|
| 10 |
+
|
| 11 |
+
def tensor_to_pil(input_object):
|
| 12 |
+
if isinstance(input_object, dict):
|
| 13 |
+
im_array = []
|
| 14 |
+
images = input_object['image']
|
| 15 |
+
else:
|
| 16 |
+
images = input_object
|
| 17 |
+
for _, image in enumerate(images):
|
| 18 |
+
im_array.append(PIL.Image.fromarray(image))
|
| 19 |
+
return im_array
|