Spaces:
Runtime error
Runtime error
Eduard-Sebastian Zamfir
commited on
Commit
·
9080570
1
Parent(s):
022d36d
add gradio app
Browse files- .gitignore +2 -0
- README.md +6 -6
- app.py +153 -0
- assets/arch.svg +0 -0
- configs/eval_seemore_t_x4.yml +14 -0
- images/img002x4.png +0 -0
- images/img003x4.png +0 -0
- images/img004x4.png +0 -0
- images/img035x4.png +0 -0
- images/img053x4.png +0 -0
- images/img064x4.png +0 -0
- images/img083x4.png +0 -0
- images/img092x4.png +0 -0
- models/seemore.py +416 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
flagged/
|
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SeemoRe
|
| 3 |
+
emoji: 💻
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.16.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import torch
|
| 4 |
+
import argparse
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from copy import deepcopy
|
| 10 |
+
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
| 11 |
+
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
from gradio_imageslider import ImageSlider
|
| 14 |
+
|
| 15 |
+
## local code
|
| 16 |
+
from models import seemore
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def dict2namespace(config):
|
| 20 |
+
namespace = argparse.Namespace()
|
| 21 |
+
for key, value in config.items():
|
| 22 |
+
if isinstance(value, dict):
|
| 23 |
+
new_value = dict2namespace(value)
|
| 24 |
+
else:
|
| 25 |
+
new_value = value
|
| 26 |
+
setattr(namespace, key, new_value)
|
| 27 |
+
return namespace
|
| 28 |
+
|
| 29 |
+
def load_img (filename, norm=True,):
|
| 30 |
+
img = np.array(Image.open(filename).convert("RGB"))
|
| 31 |
+
if norm:
|
| 32 |
+
img = img / 255.
|
| 33 |
+
img = img.astype(np.float32)
|
| 34 |
+
return img
|
| 35 |
+
|
| 36 |
+
def process_img (image):
|
| 37 |
+
img = np.array(image)
|
| 38 |
+
img = img / 255.
|
| 39 |
+
img = img.astype(np.float32)
|
| 40 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
x_hat = model(y)
|
| 44 |
+
|
| 45 |
+
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
| 46 |
+
restored_img = np.clip(restored_img, 0. , 1.)
|
| 47 |
+
|
| 48 |
+
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
| 49 |
+
#return Image.fromarray(restored_img) #
|
| 50 |
+
return (image, Image.fromarray(restored_img))
|
| 51 |
+
|
| 52 |
+
def load_network(net, load_path, strict=True, param_key='params'):
|
| 53 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
| 54 |
+
net = net.module
|
| 55 |
+
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
|
| 56 |
+
if param_key is not None:
|
| 57 |
+
if param_key not in load_net and 'params' in load_net:
|
| 58 |
+
param_key = 'params'
|
| 59 |
+
load_net = load_net[param_key]
|
| 60 |
+
# remove unnecessary 'module.'
|
| 61 |
+
for k, v in deepcopy(load_net).items():
|
| 62 |
+
if k.startswith('module.'):
|
| 63 |
+
load_net[k[7:]] = v
|
| 64 |
+
load_net.pop(k)
|
| 65 |
+
net.load_state_dict(load_net, strict=strict)
|
| 66 |
+
|
| 67 |
+
CONFIG = "configs/eval_seemore_t_x4.yml"
|
| 68 |
+
MODEL_NAME = "checkpoints/SeemoRe_T/X4/net_g_latest.pth"
|
| 69 |
+
|
| 70 |
+
# parse config file
|
| 71 |
+
with open(os.path.join(CONFIG), "r") as f:
|
| 72 |
+
config = yaml.safe_load(f)
|
| 73 |
+
|
| 74 |
+
cfg = dict2namespace(config)
|
| 75 |
+
|
| 76 |
+
device = torch.device("cpu")
|
| 77 |
+
model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans,
|
| 78 |
+
num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim,
|
| 79 |
+
img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size,
|
| 80 |
+
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk)
|
| 81 |
+
|
| 82 |
+
model = model.to(device)
|
| 83 |
+
print ("IMAGE MODEL CKPT:", MODEL_NAME)
|
| 84 |
+
load_network(model, MODEL_NAME, strict=True, param_key='params')
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
title = "See More Details"
|
| 90 |
+
description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining
|
| 91 |
+
|
| 92 |
+
#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
|
| 93 |
+
|
| 94 |
+
#### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
|
| 95 |
+
#### **<sup>*</sup> Corresponding authors**
|
| 96 |
+
|
| 97 |
+
<details>
|
| 98 |
+
<summary> <b> Abstract</b> (click me to read)</summary>
|
| 99 |
+
<p>
|
| 100 |
+
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
|
| 101 |
+
</p>
|
| 102 |
+
</details>
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
<br>
|
| 106 |
+
|
| 107 |
+
<code>
|
| 108 |
+
@inproceedings{zamfir2024details,
|
| 109 |
+
title={See More Details: Efficient Image Super-Resolution by Experts Mining},
|
| 110 |
+
author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
|
| 111 |
+
booktitle={International Conference on Machine Learning},
|
| 112 |
+
year={2024},
|
| 113 |
+
organization={PMLR}
|
| 114 |
+
}
|
| 115 |
+
</code>
|
| 116 |
+
<br>
|
| 117 |
+
'''
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"
|
| 121 |
+
|
| 122 |
+
#### Image,Prompts examples
|
| 123 |
+
examples = [['images/img002x4.png'],
|
| 124 |
+
['images/img003x4.png'],
|
| 125 |
+
['images/img004x4.png'],
|
| 126 |
+
['images/img035x4.png'],
|
| 127 |
+
['images/img053x4.png'],
|
| 128 |
+
['images/img064x4.png'],
|
| 129 |
+
['images/img083x4.png'],
|
| 130 |
+
['images/img092x4.png'],
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
css = """
|
| 134 |
+
.image-frame img, .image-container img {
|
| 135 |
+
width: auto;
|
| 136 |
+
height: auto;
|
| 137 |
+
max-width: none;
|
| 138 |
+
}
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
demo = gr.Interface(
|
| 142 |
+
fn=process_img,
|
| 143 |
+
inputs=[gr.Image(type="pil", label="Input", value="images/img002x4.png"),],
|
| 144 |
+
outputs=ImageSlider(label="Super-Resolved Image", type="pil"), #[gr.Image(type="pil", label="Ouput", min_width=500)],
|
| 145 |
+
title=title,
|
| 146 |
+
description=description,
|
| 147 |
+
article=article,
|
| 148 |
+
examples=examples,
|
| 149 |
+
css=css,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
demo.launch()
|
assets/arch.svg
ADDED
|
|
configs/eval_seemore_t_x4.yml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: "SeemoRe"
|
| 3 |
+
scale: 4
|
| 4 |
+
in_chans: 3
|
| 5 |
+
num_experts: 3
|
| 6 |
+
img_range: 1.0
|
| 7 |
+
num_layers: 6
|
| 8 |
+
embedding_dim: 36
|
| 9 |
+
use_shuffle: True
|
| 10 |
+
lr_space: exp
|
| 11 |
+
topk: 1
|
| 12 |
+
recursive: 2
|
| 13 |
+
global_kernel_size: 11
|
| 14 |
+
|
images/img002x4.png
ADDED
|
images/img003x4.png
ADDED
|
images/img004x4.png
ADDED
|
images/img035x4.png
ADDED
|
images/img053x4.png
ADDED
|
images/img064x4.png
ADDED
|
images/img083x4.png
ADDED
|
images/img092x4.png
ADDED
|
models/seemore.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple, List
|
| 2 |
+
from torch import Tensor
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from einops.layers.torch import Rearrange
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
######################
|
| 11 |
+
# Meta Architecture
|
| 12 |
+
######################
|
| 13 |
+
class SeemoRe(nn.Module):
|
| 14 |
+
def __init__(self,
|
| 15 |
+
scale: int = 4,
|
| 16 |
+
in_chans: int = 3,
|
| 17 |
+
num_experts: int = 6,
|
| 18 |
+
num_layers: int = 6,
|
| 19 |
+
embedding_dim: int = 64,
|
| 20 |
+
img_range: float = 1.0,
|
| 21 |
+
use_shuffle: bool = False,
|
| 22 |
+
global_kernel_size: int = 11,
|
| 23 |
+
recursive: int = 2,
|
| 24 |
+
lr_space: int = 1,
|
| 25 |
+
topk: int = 2,):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.scale = scale
|
| 28 |
+
self.num_in_channels = in_chans
|
| 29 |
+
self.num_out_channels = in_chans
|
| 30 |
+
self.img_range = img_range
|
| 31 |
+
|
| 32 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 33 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# -- SHALLOW FEATURES --
|
| 37 |
+
self.conv_1 = nn.Conv2d(self.num_in_channels, embedding_dim, kernel_size=3, padding=1)
|
| 38 |
+
|
| 39 |
+
# -- DEEP FEATURES --
|
| 40 |
+
self.body = nn.ModuleList(
|
| 41 |
+
[ResGroup(in_ch=embedding_dim,
|
| 42 |
+
num_experts=num_experts,
|
| 43 |
+
use_shuffle=use_shuffle,
|
| 44 |
+
topk=topk,
|
| 45 |
+
lr_space=lr_space,
|
| 46 |
+
recursive=recursive,
|
| 47 |
+
global_kernel_size=global_kernel_size) for i in range(num_layers)]
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# -- UPSCALE --
|
| 51 |
+
self.norm = LayerNorm(embedding_dim, data_format='channels_first')
|
| 52 |
+
self.conv_2 = nn.Conv2d(embedding_dim, embedding_dim, kernel_size=3, padding=1)
|
| 53 |
+
self.upsampler = nn.Sequential(
|
| 54 |
+
nn.Conv2d(embedding_dim, (scale**2) * self.num_out_channels, kernel_size=3, padding=1),
|
| 55 |
+
nn.PixelShuffle(scale)
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 59 |
+
self.mean = self.mean.type_as(x)
|
| 60 |
+
x = (x - self.mean) * self.img_range
|
| 61 |
+
|
| 62 |
+
# -- SHALLOW FEATURES --
|
| 63 |
+
x = self.conv_1(x)
|
| 64 |
+
res = x
|
| 65 |
+
|
| 66 |
+
# -- DEEP FEATURES --
|
| 67 |
+
for idx, layer in enumerate(self.body):
|
| 68 |
+
x = layer(x)
|
| 69 |
+
|
| 70 |
+
x = self.norm(x)
|
| 71 |
+
|
| 72 |
+
# -- HR IMAGE RECONSTRUCTION --
|
| 73 |
+
x = self.conv_2(x) + res
|
| 74 |
+
x = self.upsampler(x)
|
| 75 |
+
|
| 76 |
+
x = x / self.img_range + self.mean
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
#############################
|
| 82 |
+
# Components
|
| 83 |
+
#############################
|
| 84 |
+
class ResGroup(nn.Module):
|
| 85 |
+
def __init__(self,
|
| 86 |
+
in_ch: int,
|
| 87 |
+
num_experts: int,
|
| 88 |
+
global_kernel_size: int = 11,
|
| 89 |
+
lr_space: int = 1,
|
| 90 |
+
topk: int = 2,
|
| 91 |
+
recursive: int = 2,
|
| 92 |
+
use_shuffle: bool = False):
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
self.local_block = RME(in_ch=in_ch,
|
| 96 |
+
num_experts=num_experts,
|
| 97 |
+
use_shuffle=use_shuffle,
|
| 98 |
+
lr_space=lr_space,
|
| 99 |
+
topk=topk,
|
| 100 |
+
recursive=recursive)
|
| 101 |
+
self.global_block = SME(in_ch=in_ch,
|
| 102 |
+
kernel_size=global_kernel_size)
|
| 103 |
+
|
| 104 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 105 |
+
x = self.local_block(x)
|
| 106 |
+
x = self.global_block(x)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
#############################
|
| 112 |
+
# Global Block
|
| 113 |
+
#############################
|
| 114 |
+
class SME(nn.Module):
|
| 115 |
+
def __init__(self,
|
| 116 |
+
in_ch: int,
|
| 117 |
+
kernel_size: int = 11):
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.norm_1 = LayerNorm(in_ch, data_format='channels_first')
|
| 121 |
+
self.block = StripedConvFormer(in_ch=in_ch, kernel_size=kernel_size)
|
| 122 |
+
|
| 123 |
+
self.norm_2 = LayerNorm(in_ch, data_format='channels_first')
|
| 124 |
+
self.ffn = GatedFFN(in_ch, mlp_ratio=2, kernel_size=3, act_layer=nn.GELU())
|
| 125 |
+
|
| 126 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 127 |
+
x = self.block(self.norm_1(x)) + x
|
| 128 |
+
x = self.ffn(self.norm_2(x)) + x
|
| 129 |
+
return x
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class StripedConvFormer(nn.Module):
|
| 135 |
+
def __init__(self,
|
| 136 |
+
in_ch: int,
|
| 137 |
+
kernel_size: int):
|
| 138 |
+
super().__init__()
|
| 139 |
+
self.in_ch = in_ch
|
| 140 |
+
self.kernel_size = kernel_size
|
| 141 |
+
self.padding = kernel_size // 2
|
| 142 |
+
|
| 143 |
+
self.proj = nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
|
| 144 |
+
self.to_qv = nn.Sequential(
|
| 145 |
+
nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, padding=0),
|
| 146 |
+
nn.GELU(),
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
self.attn = StripedConv2d(in_ch, kernel_size=kernel_size, depthwise=True)
|
| 150 |
+
|
| 151 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
+
q, v = self.to_qv(x).chunk(2, dim=1)
|
| 153 |
+
q = self.attn(q)
|
| 154 |
+
x = self.proj(q * v)
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
#############################
|
| 160 |
+
# Local Blocks
|
| 161 |
+
#############################
|
| 162 |
+
class RME(nn.Module):
|
| 163 |
+
def __init__(self,
|
| 164 |
+
in_ch: int,
|
| 165 |
+
num_experts: int,
|
| 166 |
+
topk: int,
|
| 167 |
+
lr_space: int = 1,
|
| 168 |
+
recursive: int = 2,
|
| 169 |
+
use_shuffle: bool = False,):
|
| 170 |
+
super().__init__()
|
| 171 |
+
|
| 172 |
+
self.norm_1 = LayerNorm(in_ch, data_format='channels_first')
|
| 173 |
+
self.block = MoEBlock(in_ch=in_ch, num_experts=num_experts, topk=topk, use_shuffle=use_shuffle, recursive=recursive, lr_space=lr_space,)
|
| 174 |
+
|
| 175 |
+
self.norm_2 = LayerNorm(in_ch, data_format='channels_first')
|
| 176 |
+
self.ffn = GatedFFN(in_ch, mlp_ratio=2, kernel_size=3, act_layer=nn.GELU())
|
| 177 |
+
|
| 178 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 179 |
+
x = self.block(self.norm_1(x)) + x
|
| 180 |
+
x = self.ffn(self.norm_2(x)) + x
|
| 181 |
+
return x
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
#################
|
| 186 |
+
# MoE Layer
|
| 187 |
+
#################
|
| 188 |
+
class MoEBlock(nn.Module):
|
| 189 |
+
def __init__(self,
|
| 190 |
+
in_ch: int,
|
| 191 |
+
num_experts: int,
|
| 192 |
+
topk: int,
|
| 193 |
+
use_shuffle: bool = False,
|
| 194 |
+
lr_space: str = "linear",
|
| 195 |
+
recursive: int = 2):
|
| 196 |
+
super().__init__()
|
| 197 |
+
self.use_shuffle = use_shuffle
|
| 198 |
+
self.recursive = recursive
|
| 199 |
+
|
| 200 |
+
self.conv_1 = nn.Sequential(
|
| 201 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1),
|
| 202 |
+
nn.GELU(),
|
| 203 |
+
nn.Conv2d(in_ch, 2*in_ch, kernel_size=1, padding=0)
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
self.agg_conv = nn.Sequential(
|
| 207 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=4, stride=4, groups=in_ch),
|
| 208 |
+
nn.GELU())
|
| 209 |
+
|
| 210 |
+
self.conv = nn.Sequential(
|
| 211 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=3, stride=1, padding=1, groups=in_ch),
|
| 212 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
self.conv_2 = nn.Sequential(
|
| 216 |
+
StripedConv2d(in_ch, kernel_size=3, depthwise=True),
|
| 217 |
+
nn.GELU())
|
| 218 |
+
|
| 219 |
+
if lr_space == "linear":
|
| 220 |
+
grow_func = lambda i: i+2
|
| 221 |
+
elif lr_space == "exp":
|
| 222 |
+
grow_func = lambda i: 2**(i+1)
|
| 223 |
+
elif lr_space == "double":
|
| 224 |
+
grow_func = lambda i: 2*i+2
|
| 225 |
+
else:
|
| 226 |
+
raise NotImplementedError(f"lr_space {lr_space} not implemented")
|
| 227 |
+
|
| 228 |
+
self.moe_layer = MoELayer(
|
| 229 |
+
experts=[Expert(in_ch=in_ch, low_dim=grow_func(i)) for i in range(num_experts)], # add here multiple of 2 as low_dim
|
| 230 |
+
gate=Router(in_ch=in_ch, num_experts=num_experts),
|
| 231 |
+
num_expert=topk,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
self.proj = nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
|
| 235 |
+
|
| 236 |
+
def calibrate(self, x: torch.Tensor) -> torch.Tensor:
|
| 237 |
+
b, c, h, w = x.shape
|
| 238 |
+
res = x
|
| 239 |
+
|
| 240 |
+
for _ in range(self.recursive):
|
| 241 |
+
x = self.agg_conv(x)
|
| 242 |
+
x = self.conv(x)
|
| 243 |
+
x = F.interpolate(x, size=(h, w), mode="bilinear", align_corners=False)
|
| 244 |
+
return res + x
|
| 245 |
+
|
| 246 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 247 |
+
x = self.conv_1(x)
|
| 248 |
+
|
| 249 |
+
if self.use_shuffle:
|
| 250 |
+
x = channel_shuffle(x, groups=2)
|
| 251 |
+
x, k = torch.chunk(x, chunks=2, dim=1)
|
| 252 |
+
|
| 253 |
+
x = self.conv_2(x)
|
| 254 |
+
k = self.calibrate(k)
|
| 255 |
+
|
| 256 |
+
x = self.moe_layer(x, k)
|
| 257 |
+
x = self.proj(x)
|
| 258 |
+
return x
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class MoELayer(nn.Module):
|
| 262 |
+
def __init__(self, experts: List[nn.Module], gate: nn.Module, num_expert: int = 1):
|
| 263 |
+
super().__init__()
|
| 264 |
+
assert len(experts) > 0
|
| 265 |
+
self.experts = nn.ModuleList(experts)
|
| 266 |
+
self.gate = gate
|
| 267 |
+
self.num_expert = num_expert
|
| 268 |
+
|
| 269 |
+
def forward(self, inputs: torch.Tensor, k: torch.Tensor):
|
| 270 |
+
out = self.gate(inputs)
|
| 271 |
+
weights = F.softmax(out, dim=1, dtype=torch.float).to(inputs.dtype)
|
| 272 |
+
topk_weights, topk_experts = torch.topk(weights, self.num_expert)
|
| 273 |
+
out = inputs.clone()
|
| 274 |
+
|
| 275 |
+
if self.training:
|
| 276 |
+
exp_weights = torch.zeros_like(weights)
|
| 277 |
+
exp_weights.scatter_(1, topk_experts, weights.gather(1, topk_experts))
|
| 278 |
+
for i, expert in enumerate(self.experts):
|
| 279 |
+
out += expert(inputs, k) * exp_weights[:, i:i+1, None, None]
|
| 280 |
+
else:
|
| 281 |
+
selected_experts = [self.experts[i] for i in topk_experts.squeeze(dim=0)]
|
| 282 |
+
for i, expert in enumerate(selected_experts):
|
| 283 |
+
out += expert(inputs, k) * topk_weights[:, i:i+1, None, None]
|
| 284 |
+
|
| 285 |
+
return out
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class Expert(nn.Module):
|
| 290 |
+
def __init__(self,
|
| 291 |
+
in_ch: int,
|
| 292 |
+
low_dim: int,):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.conv_1 = nn.Conv2d(in_ch, low_dim, kernel_size=1, padding=0)
|
| 295 |
+
self.conv_2 = nn.Conv2d(in_ch, low_dim, kernel_size=1, padding=0)
|
| 296 |
+
self.conv_3 = nn.Conv2d(low_dim, in_ch, kernel_size=1, padding=0)
|
| 297 |
+
|
| 298 |
+
def forward(self, x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
|
| 299 |
+
x = self.conv_1(x)
|
| 300 |
+
x = self.conv_2(k) * x # here no more sigmoid
|
| 301 |
+
x = self.conv_3(x)
|
| 302 |
+
return x
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
class Router(nn.Module):
|
| 306 |
+
def __init__(self,
|
| 307 |
+
in_ch: int,
|
| 308 |
+
num_experts: int):
|
| 309 |
+
super().__init__()
|
| 310 |
+
|
| 311 |
+
self.body = nn.Sequential(
|
| 312 |
+
nn.AdaptiveAvgPool2d(1),
|
| 313 |
+
Rearrange('b c 1 1 -> b c'),
|
| 314 |
+
nn.Linear(in_ch, num_experts, bias=False),
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 318 |
+
return self.body(x)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
#################
|
| 323 |
+
# Utilities
|
| 324 |
+
#################
|
| 325 |
+
class StripedConv2d(nn.Module):
|
| 326 |
+
def __init__(self,
|
| 327 |
+
in_ch: int,
|
| 328 |
+
kernel_size: int,
|
| 329 |
+
depthwise: bool = False):
|
| 330 |
+
super().__init__()
|
| 331 |
+
self.in_ch = in_ch
|
| 332 |
+
self.kernel_size = kernel_size
|
| 333 |
+
self.padding = kernel_size // 2
|
| 334 |
+
|
| 335 |
+
self.conv = nn.Sequential(
|
| 336 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=(1, self.kernel_size), padding=(0, self.padding), groups=in_ch if depthwise else 1),
|
| 337 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=(self.kernel_size, 1), padding=(self.padding, 0), groups=in_ch if depthwise else 1),
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 341 |
+
return self.conv(x)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def channel_shuffle(x, groups=2):
|
| 346 |
+
bat_size, channels, w, h = x.shape
|
| 347 |
+
group_c = channels // groups
|
| 348 |
+
x = x.view(bat_size, groups, group_c, w, h)
|
| 349 |
+
x = torch.transpose(x, 1, 2).contiguous()
|
| 350 |
+
x = x.view(bat_size, -1, w, h)
|
| 351 |
+
return x
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class GatedFFN(nn.Module):
|
| 355 |
+
def __init__(self,
|
| 356 |
+
in_ch,
|
| 357 |
+
mlp_ratio,
|
| 358 |
+
kernel_size,
|
| 359 |
+
act_layer,):
|
| 360 |
+
super().__init__()
|
| 361 |
+
mlp_ch = in_ch * mlp_ratio
|
| 362 |
+
|
| 363 |
+
self.fn_1 = nn.Sequential(
|
| 364 |
+
nn.Conv2d(in_ch, mlp_ch, kernel_size=1, padding=0),
|
| 365 |
+
act_layer,
|
| 366 |
+
)
|
| 367 |
+
self.fn_2 = nn.Sequential(
|
| 368 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0),
|
| 369 |
+
act_layer,
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
self.gate = nn.Conv2d(mlp_ch // 2, mlp_ch // 2,
|
| 373 |
+
kernel_size=kernel_size, padding=kernel_size // 2, groups=mlp_ch // 2)
|
| 374 |
+
|
| 375 |
+
def feat_decompose(self, x):
|
| 376 |
+
s = x - self.gate(x)
|
| 377 |
+
x = x + self.sigma * s
|
| 378 |
+
return x
|
| 379 |
+
|
| 380 |
+
def forward(self, x: torch.Tensor):
|
| 381 |
+
x = self.fn_1(x)
|
| 382 |
+
x, gate = torch.chunk(x, 2, dim=1)
|
| 383 |
+
|
| 384 |
+
gate = self.gate(gate)
|
| 385 |
+
x = x * gate
|
| 386 |
+
|
| 387 |
+
x = self.fn_2(x)
|
| 388 |
+
return x
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
class LayerNorm(nn.Module):
|
| 393 |
+
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
| 394 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
| 395 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
| 396 |
+
with shape (batch_size, channels, height, width).
|
| 397 |
+
"""
|
| 398 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
| 399 |
+
super().__init__()
|
| 400 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
| 401 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
| 402 |
+
self.eps = eps
|
| 403 |
+
self.data_format = data_format
|
| 404 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
| 405 |
+
raise NotImplementedError
|
| 406 |
+
self.normalized_shape = (normalized_shape, )
|
| 407 |
+
|
| 408 |
+
def forward(self, x):
|
| 409 |
+
if self.data_format == "channels_last":
|
| 410 |
+
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 411 |
+
elif self.data_format == "channels_first":
|
| 412 |
+
u = x.mean(1, keepdim=True)
|
| 413 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 414 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 415 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 416 |
+
return x
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
numpy
|
| 3 |
+
PyYAML
|
| 4 |
+
Pillow>=6.2.2
|
| 5 |
+
gradio==4.16.0
|
| 6 |
+
gradio_imageslider==0.0.18
|