Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,9 +16,9 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipelin
|
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
@@ -42,7 +42,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 42 |
def load_pipeline(model_name):
|
| 43 |
vae = AutoencoderKL.from_pretrained(
|
| 44 |
"madebyollin/sdxl-vae-fp16-fix",
|
| 45 |
-
torch_dtype=torch.
|
| 46 |
)
|
| 47 |
pipeline = (
|
| 48 |
StableDiffusionXLPipeline.from_single_file
|
|
@@ -53,7 +53,7 @@ def load_pipeline(model_name):
|
|
| 53 |
pipe = pipeline(
|
| 54 |
model_name,
|
| 55 |
vae=vae,
|
| 56 |
-
torch_dtype=torch.
|
| 57 |
custom_pipeline="lpw_stable_diffusion_xl",
|
| 58 |
use_safetensors=True,
|
| 59 |
add_watermarker=False,
|
|
@@ -64,7 +64,6 @@ def load_pipeline(model_name):
|
|
| 64 |
return pipe
|
| 65 |
|
| 66 |
|
| 67 |
-
@spaces.GPU
|
| 68 |
def generate(
|
| 69 |
prompt: str,
|
| 70 |
negative_prompt: str = "",
|
|
@@ -139,39 +138,40 @@ def generate(
|
|
| 139 |
logger.info(json.dumps(metadata, indent=4))
|
| 140 |
|
| 141 |
try:
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
| 175 |
|
| 176 |
if images:
|
| 177 |
image_paths = [
|
|
@@ -193,11 +193,13 @@ def generate(
|
|
| 193 |
utils.free_memory()
|
| 194 |
|
| 195 |
|
|
|
|
| 196 |
if torch.cuda.is_available():
|
| 197 |
pipe = load_pipeline(MODEL)
|
| 198 |
logger.info("Loaded on Device!")
|
| 199 |
else:
|
| 200 |
-
pipe =
|
|
|
|
| 201 |
|
| 202 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
| 203 |
quality_prompt = {
|
|
@@ -206,11 +208,11 @@ quality_prompt = {
|
|
| 206 |
|
| 207 |
wildcard_files = utils.load_wildcard_files("wildcard")
|
| 208 |
|
| 209 |
-
with gr.Blocks(css="style.css") as demo:
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
gr.Markdown(
|
| 215 |
f"""Gradio demo for [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)""",
|
| 216 |
elem_id="subtitle",
|
|
@@ -392,4 +394,4 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 392 |
)
|
| 393 |
|
| 394 |
if __name__ == "__main__":
|
| 395 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
+
DESCRIPTION = "Animagine XL 3.1"
|
| 20 |
+
if not torch.cuda.is_available():
|
| 21 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo is slower on CPU. </p>"
|
| 22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
|
|
| 42 |
def load_pipeline(model_name):
|
| 43 |
vae = AutoencoderKL.from_pretrained(
|
| 44 |
"madebyollin/sdxl-vae-fp16-fix",
|
| 45 |
+
torch_dtype=torch.float32,
|
| 46 |
)
|
| 47 |
pipeline = (
|
| 48 |
StableDiffusionXLPipeline.from_single_file
|
|
|
|
| 53 |
pipe = pipeline(
|
| 54 |
model_name,
|
| 55 |
vae=vae,
|
| 56 |
+
torch_dtype=torch.float32,
|
| 57 |
custom_pipeline="lpw_stable_diffusion_xl",
|
| 58 |
use_safetensors=True,
|
| 59 |
add_watermarker=False,
|
|
|
|
| 64 |
return pipe
|
| 65 |
|
| 66 |
|
|
|
|
| 67 |
def generate(
|
| 68 |
prompt: str,
|
| 69 |
negative_prompt: str = "",
|
|
|
|
| 138 |
logger.info(json.dumps(metadata, indent=4))
|
| 139 |
|
| 140 |
try:
|
| 141 |
+
with torch.no_grad():
|
| 142 |
+
if use_upscaler:
|
| 143 |
+
latents = pipe(
|
| 144 |
+
prompt=prompt,
|
| 145 |
+
negative_prompt=negative_prompt,
|
| 146 |
+
width=width,
|
| 147 |
+
height=height,
|
| 148 |
+
guidance_scale=guidance_scale,
|
| 149 |
+
num_inference_steps=num_inference_steps,
|
| 150 |
+
generator=generator,
|
| 151 |
+
output_type="latent",
|
| 152 |
+
).images
|
| 153 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 154 |
+
images = upscaler_pipe(
|
| 155 |
+
prompt=prompt,
|
| 156 |
+
negative_prompt=negative_prompt,
|
| 157 |
+
image=upscaled_latents,
|
| 158 |
+
guidance_scale=guidance_scale,
|
| 159 |
+
num_inference_steps=num_inference_steps,
|
| 160 |
+
strength=upscaler_strength,
|
| 161 |
+
generator=generator,
|
| 162 |
+
output_type="pil",
|
| 163 |
+
).images
|
| 164 |
+
else:
|
| 165 |
+
images = pipe(
|
| 166 |
+
prompt=prompt,
|
| 167 |
+
negative_prompt=negative_prompt,
|
| 168 |
+
width=width,
|
| 169 |
+
height=height,
|
| 170 |
+
guidance_scale=guidance_scale,
|
| 171 |
+
num_inference_steps=num_inference_steps,
|
| 172 |
+
generator=generator,
|
| 173 |
+
output_type="pil",
|
| 174 |
+
).images
|
| 175 |
|
| 176 |
if images:
|
| 177 |
image_paths = [
|
|
|
|
| 193 |
utils.free_memory()
|
| 194 |
|
| 195 |
|
| 196 |
+
|
| 197 |
if torch.cuda.is_available():
|
| 198 |
pipe = load_pipeline(MODEL)
|
| 199 |
logger.info("Loaded on Device!")
|
| 200 |
else:
|
| 201 |
+
pipe = load_pipeline(MODEL)
|
| 202 |
+
logger.info("Loaded on CPU!")
|
| 203 |
|
| 204 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
| 205 |
quality_prompt = {
|
|
|
|
| 208 |
|
| 209 |
wildcard_files = utils.load_wildcard_files("wildcard")
|
| 210 |
|
| 211 |
+
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
| 212 |
+
title = gr.HTML(
|
| 213 |
+
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
| 214 |
+
elem_id="title",
|
| 215 |
+
)
|
| 216 |
gr.Markdown(
|
| 217 |
f"""Gradio demo for [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)""",
|
| 218 |
elem_id="subtitle",
|
|
|
|
| 394 |
)
|
| 395 |
|
| 396 |
if __name__ == "__main__":
|
| 397 |
+
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|