import os from df.enhance import enhance, init_df, load_audio, save_audio def denoise_audio(input_path, output_path=None): """ Apply noise reduction to an audio file. Parameters: - input_path (str): Path to the input audio file - output_path (str, optional): Path where the denoised audio will be saved. If None, it will be saved in the 'audio/reduced' directory with the original filename + '_cleaned.wav' Returns: - str: Path to the denoised audio file """ # Create output path if not specified if output_path is None: output_dir = "audio/reduced" os.makedirs(output_dir, exist_ok=True) # Extract the base name of the input audio file (without extension) base_name = os.path.splitext(os.path.basename(input_path))[0] # Define the output audio file path using the original filename output_path = os.path.join(output_dir, f"{base_name}_cleaned.wav") else: # Ensure directory exists for the specified output path os.makedirs(os.path.dirname(os.path.abspath(output_path)), exist_ok=True) # Initialize the model model, df_state, _ = init_df() # Load your audio file (must be 48kHz mono WAV) audio, _ = load_audio(input_path, sr=df_state.sr()) # Apply noise reduction enhanced = enhance(model, df_state, audio) # Save the enhanced audio save_audio(output_path, enhanced, df_state.sr()) return output_path