Spaces:
Runtime error
Runtime error
Commit
·
905c952
1
Parent(s):
3e791eb
feat: Enhance CatVTON functionality with new pipelines and UI improvements
Browse files- Added CatVTONPix2PixPipeline and FluxTryOnPipeline to support additional virtual try-on methods.
- Implemented new submit functions for mask-free and Flux-based try-on.
- Updated UI to include separate tabs for mask-based and mask-free options, enhancing user experience.
- Modified requirements.txt to include new dependencies and updated existing ones.
- Improved error handling and image processing in the submission functions.
- app.py +451 -113
- model/flux/pipeline_flux_tryon.py +499 -0
- model/flux/transformer_flux.py +672 -0
- model/pipeline.py +117 -0
- requirements.txt +4 -3
app.py
CHANGED
|
@@ -13,7 +13,8 @@ from huggingface_hub import snapshot_download
|
|
| 13 |
from PIL import Image
|
| 14 |
torch.jit.script = lambda f: f
|
| 15 |
from model.cloth_masker import AutoMasker, vis_mask
|
| 16 |
-
from model.pipeline import CatVTONPipeline
|
|
|
|
| 17 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
| 18 |
|
| 19 |
|
|
@@ -105,7 +106,10 @@ def image_grid(imgs, rows, cols):
|
|
| 105 |
|
| 106 |
|
| 107 |
args = parse_args()
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
| 109 |
# Pipeline
|
| 110 |
pipeline = CatVTONPipeline(
|
| 111 |
base_ckpt=args.base_model_path,
|
|
@@ -123,6 +127,30 @@ automasker = AutoMasker(
|
|
| 123 |
device='cuda',
|
| 124 |
)
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
@spaces.GPU(duration=120)
|
| 127 |
def submit_function(
|
| 128 |
person_image,
|
|
@@ -202,10 +230,135 @@ def submit_function(
|
|
| 202 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
| 203 |
return new_result_image
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
def person_example_fn(image_path):
|
| 207 |
return image_path
|
| 208 |
|
|
|
|
| 209 |
HEADER = """
|
| 210 |
<h1 style="text-align: center;"> 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
|
| 211 |
<div style="display: flex; justify-content: center; align-items: center;">
|
|
@@ -241,136 +394,321 @@ HEADER = """
|
|
| 241 |
def app_gradio():
|
| 242 |
with gr.Blocks(title="CatVTON") as demo:
|
| 243 |
gr.Markdown(HEADER)
|
| 244 |
-
with gr.
|
| 245 |
-
with gr.
|
| 246 |
-
with gr.
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
)
|
| 252 |
-
|
| 253 |
-
|
|
|
|
| 254 |
)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
| 260 |
)
|
| 261 |
-
|
| 262 |
-
gr.
|
| 263 |
-
|
| 264 |
)
|
| 265 |
-
|
| 266 |
-
label="
|
| 267 |
-
choices=["
|
| 268 |
-
value="
|
| 269 |
)
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
| 275 |
)
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
)
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
)
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
value="input & mask & result",
|
| 296 |
)
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
],
|
| 309 |
-
examples_per_page=4,
|
| 310 |
-
inputs=image_path,
|
| 311 |
-
label="Person Examples ①",
|
| 312 |
)
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
)
|
| 322 |
-
gr.
|
| 323 |
-
|
| 324 |
)
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
)
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
| 339 |
-
],
|
| 340 |
-
examples_per_page=4,
|
| 341 |
-
inputs=cloth_image,
|
| 342 |
-
label="Condition Overall Examples",
|
| 343 |
)
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
| 348 |
-
],
|
| 349 |
-
examples_per_page=4,
|
| 350 |
-
inputs=cloth_image,
|
| 351 |
-
label="Condition Reference Person Examples",
|
| 352 |
)
|
| 353 |
-
gr.
|
| 354 |
-
|
|
|
|
|
|
|
| 355 |
)
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
cloth_type,
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
show_type,
|
| 371 |
-
],
|
| 372 |
-
result_image,
|
| 373 |
-
)
|
| 374 |
demo.queue().launch(share=True, show_error=True)
|
| 375 |
|
| 376 |
|
|
|
|
| 13 |
from PIL import Image
|
| 14 |
torch.jit.script = lambda f: f
|
| 15 |
from model.cloth_masker import AutoMasker, vis_mask
|
| 16 |
+
from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline
|
| 17 |
+
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
|
| 18 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
| 19 |
|
| 20 |
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
args = parse_args()
|
| 109 |
+
|
| 110 |
+
# Mask-based CatVTON
|
| 111 |
+
catvton_repo = "zhengchong/CatVTON"
|
| 112 |
+
repo_path = snapshot_download(repo_id=catvton_repo)
|
| 113 |
# Pipeline
|
| 114 |
pipeline = CatVTONPipeline(
|
| 115 |
base_ckpt=args.base_model_path,
|
|
|
|
| 127 |
device='cuda',
|
| 128 |
)
|
| 129 |
|
| 130 |
+
|
| 131 |
+
# Flux-based CatVTON
|
| 132 |
+
flux_repo = "black-forest-labs/FLUX.1-Fill-dev"
|
| 133 |
+
pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo)
|
| 134 |
+
pipeline_flux.load_lora_weights(
|
| 135 |
+
os.path.join(repo_path, "flux-lora"),
|
| 136 |
+
weight_name='pytorch_lora_weights.safetensors'
|
| 137 |
+
)
|
| 138 |
+
pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision))
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# Mask-free CatVTON
|
| 142 |
+
catvton_mf_repo = "zhengchong/CatVTON-MaskFree"
|
| 143 |
+
repo_path_mf = snapshot_download(repo_id=catvton_mf_repo)
|
| 144 |
+
pipeline_p2p = CatVTONPix2PixPipeline(
|
| 145 |
+
base_ckpt=args.p2p_base_model_path,
|
| 146 |
+
attn_ckpt=repo_path,
|
| 147 |
+
attn_ckpt_version="mix-48k-1024",
|
| 148 |
+
weight_dtype=init_weight_dtype(args.mixed_precision),
|
| 149 |
+
use_tf32=args.allow_tf32,
|
| 150 |
+
device='cuda'
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
@spaces.GPU(duration=120)
|
| 155 |
def submit_function(
|
| 156 |
person_image,
|
|
|
|
| 230 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
| 231 |
return new_result_image
|
| 232 |
|
| 233 |
+
@spaces.GPU(duration=120)
|
| 234 |
+
def submit_function_p2p(
|
| 235 |
+
person_image,
|
| 236 |
+
cloth_image,
|
| 237 |
+
num_inference_steps,
|
| 238 |
+
guidance_scale,
|
| 239 |
+
seed):
|
| 240 |
+
person_image= person_image["background"]
|
| 241 |
+
|
| 242 |
+
tmp_folder = args.output_dir
|
| 243 |
+
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 244 |
+
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
| 245 |
+
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
| 246 |
+
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
| 247 |
+
|
| 248 |
+
generator = None
|
| 249 |
+
if seed != -1:
|
| 250 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 251 |
+
|
| 252 |
+
person_image = Image.open(person_image).convert("RGB")
|
| 253 |
+
cloth_image = Image.open(cloth_image).convert("RGB")
|
| 254 |
+
person_image = resize_and_crop(person_image, (args.width, args.height))
|
| 255 |
+
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
| 256 |
+
|
| 257 |
+
# Inference
|
| 258 |
+
try:
|
| 259 |
+
result_image = pipeline_p2p(
|
| 260 |
+
image=person_image,
|
| 261 |
+
condition_image=cloth_image,
|
| 262 |
+
num_inference_steps=num_inference_steps,
|
| 263 |
+
guidance_scale=guidance_scale,
|
| 264 |
+
generator=generator
|
| 265 |
+
)[0]
|
| 266 |
+
except Exception as e:
|
| 267 |
+
raise gr.Error(
|
| 268 |
+
"An error occurred. Please try again later: {}".format(e)
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Post-process
|
| 272 |
+
save_result_image = image_grid([person_image, cloth_image, result_image], 1, 3)
|
| 273 |
+
save_result_image.save(result_save_path)
|
| 274 |
+
return result_image
|
| 275 |
+
|
| 276 |
+
@spaces.GPU(duration=120)
|
| 277 |
+
def submit_function_flux(
|
| 278 |
+
person_image,
|
| 279 |
+
cloth_image,
|
| 280 |
+
cloth_type,
|
| 281 |
+
resolution,
|
| 282 |
+
num_inference_steps,
|
| 283 |
+
guidance_scale,
|
| 284 |
+
seed,
|
| 285 |
+
show_type
|
| 286 |
+
):
|
| 287 |
+
# Set height and width based on resolution
|
| 288 |
+
height = resolution
|
| 289 |
+
width = int(height * 0.75)
|
| 290 |
+
args.width = width
|
| 291 |
+
args.height = height
|
| 292 |
+
|
| 293 |
+
# Process image editor input
|
| 294 |
+
person_image, mask = person_image["background"], person_image["layers"][0]
|
| 295 |
+
mask = Image.open(mask).convert("L")
|
| 296 |
+
if len(np.unique(np.array(mask))) == 1:
|
| 297 |
+
mask = None
|
| 298 |
+
else:
|
| 299 |
+
mask = np.array(mask)
|
| 300 |
+
mask[mask > 0] = 255
|
| 301 |
+
mask = Image.fromarray(mask)
|
| 302 |
+
|
| 303 |
+
# Set random seed
|
| 304 |
+
generator = None
|
| 305 |
+
if seed != -1:
|
| 306 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 307 |
+
|
| 308 |
+
# Process input images
|
| 309 |
+
person_image = Image.open(person_image).convert("RGB")
|
| 310 |
+
cloth_image = Image.open(cloth_image).convert("RGB")
|
| 311 |
+
|
| 312 |
+
# Adjust image sizes
|
| 313 |
+
person_image = resize_and_crop(person_image, (args.width, args.height))
|
| 314 |
+
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
| 315 |
+
|
| 316 |
+
# Process mask
|
| 317 |
+
if mask is not None:
|
| 318 |
+
mask = resize_and_crop(mask, (args.width, args.height))
|
| 319 |
+
else:
|
| 320 |
+
mask = automasker(
|
| 321 |
+
person_image,
|
| 322 |
+
cloth_type
|
| 323 |
+
)['mask']
|
| 324 |
+
mask = mask_processor.blur(mask, blur_factor=9)
|
| 325 |
+
|
| 326 |
+
# Inference
|
| 327 |
+
result_image = pipeline_flux(
|
| 328 |
+
image=person_image,
|
| 329 |
+
condition_image=cloth_image,
|
| 330 |
+
mask=mask,
|
| 331 |
+
num_inference_steps=num_inference_steps,
|
| 332 |
+
guidance_scale=guidance_scale,
|
| 333 |
+
generator=generator
|
| 334 |
+
)[0]
|
| 335 |
+
|
| 336 |
+
# Post-processing
|
| 337 |
+
masked_person = vis_mask(person_image, mask)
|
| 338 |
+
|
| 339 |
+
# Return result based on show type
|
| 340 |
+
if show_type == "result only":
|
| 341 |
+
return result_image
|
| 342 |
+
else:
|
| 343 |
+
width, height = person_image.size
|
| 344 |
+
if show_type == "input & result":
|
| 345 |
+
condition_width = width // 2
|
| 346 |
+
conditions = image_grid([person_image, cloth_image], 2, 1)
|
| 347 |
+
else:
|
| 348 |
+
condition_width = width // 3
|
| 349 |
+
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
|
| 350 |
+
|
| 351 |
+
conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
| 352 |
+
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
| 353 |
+
new_result_image.paste(conditions, (0, 0))
|
| 354 |
+
new_result_image.paste(result_image, (condition_width + 5, 0))
|
| 355 |
+
return new_result_image
|
| 356 |
+
|
| 357 |
|
| 358 |
def person_example_fn(image_path):
|
| 359 |
return image_path
|
| 360 |
|
| 361 |
+
|
| 362 |
HEADER = """
|
| 363 |
<h1 style="text-align: center;"> 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
|
| 364 |
<div style="display: flex; justify-content: center; align-items: center;">
|
|
|
|
| 394 |
def app_gradio():
|
| 395 |
with gr.Blocks(title="CatVTON") as demo:
|
| 396 |
gr.Markdown(HEADER)
|
| 397 |
+
with gr.Tab("Mask-based & SD1.5"):
|
| 398 |
+
with gr.Row():
|
| 399 |
+
with gr.Column(scale=1, min_width=350):
|
| 400 |
+
with gr.Row():
|
| 401 |
+
image_path = gr.Image(
|
| 402 |
+
type="filepath",
|
| 403 |
+
interactive=True,
|
| 404 |
+
visible=False,
|
| 405 |
+
)
|
| 406 |
+
person_image = gr.ImageEditor(
|
| 407 |
+
interactive=True, label="Person Image", type="filepath"
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
with gr.Row():
|
| 411 |
+
with gr.Column(scale=1, min_width=230):
|
| 412 |
+
cloth_image = gr.Image(
|
| 413 |
+
interactive=True, label="Condition Image", type="filepath"
|
| 414 |
+
)
|
| 415 |
+
with gr.Column(scale=1, min_width=120):
|
| 416 |
+
gr.Markdown(
|
| 417 |
+
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
| 418 |
+
)
|
| 419 |
+
cloth_type = gr.Radio(
|
| 420 |
+
label="Try-On Cloth Type",
|
| 421 |
+
choices=["upper", "lower", "overall"],
|
| 422 |
+
value="upper",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
submit = gr.Button("Submit")
|
| 427 |
+
gr.Markdown(
|
| 428 |
+
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
| 429 |
)
|
| 430 |
+
|
| 431 |
+
gr.Markdown(
|
| 432 |
+
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
|
| 433 |
)
|
| 434 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 435 |
+
num_inference_steps = gr.Slider(
|
| 436 |
+
label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
| 437 |
+
)
|
| 438 |
+
# Guidence Scale
|
| 439 |
+
guidance_scale = gr.Slider(
|
| 440 |
+
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
|
| 441 |
)
|
| 442 |
+
# Random Seed
|
| 443 |
+
seed = gr.Slider(
|
| 444 |
+
label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
| 445 |
)
|
| 446 |
+
show_type = gr.Radio(
|
| 447 |
+
label="Show Type",
|
| 448 |
+
choices=["result only", "input & result", "input & mask & result"],
|
| 449 |
+
value="input & mask & result",
|
| 450 |
)
|
| 451 |
|
| 452 |
+
with gr.Column(scale=2, min_width=500):
|
| 453 |
+
result_image = gr.Image(interactive=False, label="Result")
|
| 454 |
+
with gr.Row():
|
| 455 |
+
# Photo Examples
|
| 456 |
+
root_path = "resource/demo/example"
|
| 457 |
+
with gr.Column():
|
| 458 |
+
men_exm = gr.Examples(
|
| 459 |
+
examples=[
|
| 460 |
+
os.path.join(root_path, "person", "men", _)
|
| 461 |
+
for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
| 462 |
+
],
|
| 463 |
+
examples_per_page=4,
|
| 464 |
+
inputs=image_path,
|
| 465 |
+
label="Person Examples ①",
|
| 466 |
+
)
|
| 467 |
+
women_exm = gr.Examples(
|
| 468 |
+
examples=[
|
| 469 |
+
os.path.join(root_path, "person", "women", _)
|
| 470 |
+
for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
| 471 |
+
],
|
| 472 |
+
examples_per_page=4,
|
| 473 |
+
inputs=image_path,
|
| 474 |
+
label="Person Examples ②",
|
| 475 |
+
)
|
| 476 |
+
gr.Markdown(
|
| 477 |
+
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
|
| 478 |
+
)
|
| 479 |
+
with gr.Column():
|
| 480 |
+
condition_upper_exm = gr.Examples(
|
| 481 |
+
examples=[
|
| 482 |
+
os.path.join(root_path, "condition", "upper", _)
|
| 483 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
| 484 |
+
],
|
| 485 |
+
examples_per_page=4,
|
| 486 |
+
inputs=cloth_image,
|
| 487 |
+
label="Condition Upper Examples",
|
| 488 |
+
)
|
| 489 |
+
condition_overall_exm = gr.Examples(
|
| 490 |
+
examples=[
|
| 491 |
+
os.path.join(root_path, "condition", "overall", _)
|
| 492 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
| 493 |
+
],
|
| 494 |
+
examples_per_page=4,
|
| 495 |
+
inputs=cloth_image,
|
| 496 |
+
label="Condition Overall Examples",
|
| 497 |
+
)
|
| 498 |
+
condition_person_exm = gr.Examples(
|
| 499 |
+
examples=[
|
| 500 |
+
os.path.join(root_path, "condition", "person", _)
|
| 501 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
| 502 |
+
],
|
| 503 |
+
examples_per_page=4,
|
| 504 |
+
inputs=cloth_image,
|
| 505 |
+
label="Condition Reference Person Examples",
|
| 506 |
+
)
|
| 507 |
+
gr.Markdown(
|
| 508 |
+
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
| 509 |
+
)
|
| 510 |
|
| 511 |
+
image_path.change(
|
| 512 |
+
person_example_fn, inputs=image_path, outputs=person_image
|
|
|
|
| 513 |
)
|
| 514 |
+
|
| 515 |
+
submit.click(
|
| 516 |
+
submit_function,
|
| 517 |
+
[
|
| 518 |
+
person_image,
|
| 519 |
+
cloth_image,
|
| 520 |
+
cloth_type,
|
| 521 |
+
num_inference_steps,
|
| 522 |
+
guidance_scale,
|
| 523 |
+
seed,
|
| 524 |
+
show_type,
|
| 525 |
+
],
|
| 526 |
+
result_image,
|
| 527 |
)
|
| 528 |
+
|
| 529 |
+
with gr.Tab("Mask-free & SD1.5"):
|
| 530 |
+
with gr.Row():
|
| 531 |
+
with gr.Column(scale=1, min_width=350):
|
| 532 |
+
with gr.Row():
|
| 533 |
+
image_path_p2p = gr.Image(
|
| 534 |
+
type="filepath",
|
| 535 |
+
interactive=True,
|
| 536 |
+
visible=False,
|
| 537 |
+
)
|
| 538 |
+
person_image_p2p = gr.ImageEditor(
|
| 539 |
+
interactive=True, label="Person Image", type="filepath"
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
with gr.Row():
|
| 543 |
+
with gr.Column(scale=1, min_width=230):
|
| 544 |
+
cloth_image_p2p = gr.Image(
|
| 545 |
+
interactive=True, label="Condition Image", type="filepath"
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
submit_p2p = gr.Button("Submit")
|
| 549 |
+
gr.Markdown(
|
| 550 |
+
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
| 551 |
)
|
| 552 |
+
|
| 553 |
+
gr.Markdown(
|
| 554 |
+
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
|
|
|
|
| 555 |
)
|
| 556 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 557 |
+
num_inference_steps_p2p = gr.Slider(
|
| 558 |
+
label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
| 559 |
+
)
|
| 560 |
+
# Guidence Scale
|
| 561 |
+
guidance_scale_p2p = gr.Slider(
|
| 562 |
+
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
|
| 563 |
+
)
|
| 564 |
+
# Random Seed
|
| 565 |
+
seed_p2p = gr.Slider(
|
| 566 |
+
label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
)
|
| 568 |
+
# show_type = gr.Radio(
|
| 569 |
+
# label="Show Type",
|
| 570 |
+
# choices=["result only", "input & result", "input & mask & result"],
|
| 571 |
+
# value="input & mask & result",
|
| 572 |
+
# )
|
| 573 |
+
|
| 574 |
+
with gr.Column(scale=2, min_width=500):
|
| 575 |
+
result_image_p2p = gr.Image(interactive=False, label="Result")
|
| 576 |
+
with gr.Row():
|
| 577 |
+
# Photo Examples
|
| 578 |
+
root_path = "resource/demo/example"
|
| 579 |
+
with gr.Column():
|
| 580 |
+
gr.Examples(
|
| 581 |
+
examples=[
|
| 582 |
+
os.path.join(root_path, "person", "men", _)
|
| 583 |
+
for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
| 584 |
+
],
|
| 585 |
+
examples_per_page=4,
|
| 586 |
+
inputs=image_path_p2p,
|
| 587 |
+
label="Person Examples ①",
|
| 588 |
+
)
|
| 589 |
+
gr.Examples(
|
| 590 |
+
examples=[
|
| 591 |
+
os.path.join(root_path, "person", "women", _)
|
| 592 |
+
for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
| 593 |
+
],
|
| 594 |
+
examples_per_page=4,
|
| 595 |
+
inputs=image_path_p2p,
|
| 596 |
+
label="Person Examples ②",
|
| 597 |
+
)
|
| 598 |
+
gr.Markdown(
|
| 599 |
+
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
|
| 600 |
+
)
|
| 601 |
+
with gr.Column():
|
| 602 |
+
gr.Examples(
|
| 603 |
+
examples=[
|
| 604 |
+
os.path.join(root_path, "condition", "upper", _)
|
| 605 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
| 606 |
+
],
|
| 607 |
+
examples_per_page=4,
|
| 608 |
+
inputs=cloth_image_p2p,
|
| 609 |
+
label="Condition Upper Examples",
|
| 610 |
+
)
|
| 611 |
+
gr.Examples(
|
| 612 |
+
examples=[
|
| 613 |
+
os.path.join(root_path, "condition", "overall", _)
|
| 614 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
| 615 |
+
],
|
| 616 |
+
examples_per_page=4,
|
| 617 |
+
inputs=cloth_image_p2p,
|
| 618 |
+
label="Condition Overall Examples",
|
| 619 |
+
)
|
| 620 |
+
condition_person_exm = gr.Examples(
|
| 621 |
+
examples=[
|
| 622 |
+
os.path.join(root_path, "condition", "person", _)
|
| 623 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
| 624 |
+
],
|
| 625 |
+
examples_per_page=4,
|
| 626 |
+
inputs=cloth_image_p2p,
|
| 627 |
+
label="Condition Reference Person Examples",
|
| 628 |
+
)
|
| 629 |
+
gr.Markdown(
|
| 630 |
+
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
image_path_p2p.change(
|
| 634 |
+
person_example_fn, inputs=image_path_p2p, outputs=person_image_p2p
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
submit_p2p.click(
|
| 638 |
+
submit_function_p2p,
|
| 639 |
+
[
|
| 640 |
+
person_image_p2p,
|
| 641 |
+
cloth_image_p2p,
|
| 642 |
+
num_inference_steps_p2p,
|
| 643 |
+
guidance_scale_p2p,
|
| 644 |
+
seed_p2p],
|
| 645 |
+
result_image_p2p,
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
with gr.Tab("Mask-based & Flux.1 Fill Dev"):
|
| 649 |
+
with gr.Row():
|
| 650 |
+
with gr.Column(scale=1, min_width=350):
|
| 651 |
+
with gr.Row():
|
| 652 |
+
image_path_flux = gr.Image(
|
| 653 |
+
type="filepath",
|
| 654 |
+
interactive=True,
|
| 655 |
+
visible=False,
|
| 656 |
)
|
| 657 |
+
person_image_flux = gr.ImageEditor(
|
| 658 |
+
interactive=True, label="Person Image", type="filepath"
|
| 659 |
)
|
| 660 |
+
|
| 661 |
+
with gr.Row():
|
| 662 |
+
with gr.Column(scale=1, min_width=230):
|
| 663 |
+
cloth_image_flux = gr.Image(
|
| 664 |
+
interactive=True, label="Condition Image", type="filepath"
|
| 665 |
+
)
|
| 666 |
+
with gr.Column(scale=1, min_width=120):
|
| 667 |
+
gr.Markdown(
|
| 668 |
+
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
| 669 |
+
)
|
| 670 |
+
cloth_type = gr.Radio(
|
| 671 |
+
label="Try-On Cloth Type",
|
| 672 |
+
choices=["upper", "lower", "overall"],
|
| 673 |
+
value="upper",
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
submit_flux = gr.Button("Submit")
|
| 677 |
+
gr.Markdown(
|
| 678 |
+
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 682 |
+
num_inference_steps_flux = gr.Slider(
|
| 683 |
+
label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
| 684 |
)
|
| 685 |
+
# Guidence Scale
|
| 686 |
+
guidance_scale_flux = gr.Slider(
|
| 687 |
+
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 688 |
)
|
| 689 |
+
# Random Seed
|
| 690 |
+
seed_flux = gr.Slider(
|
| 691 |
+
label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
)
|
| 693 |
+
show_type = gr.Radio(
|
| 694 |
+
label="Show Type",
|
| 695 |
+
choices=["result only", "input & result", "input & mask & result"],
|
| 696 |
+
value="input & mask & result",
|
| 697 |
)
|
| 698 |
|
| 699 |
+
with gr.Column(scale=2, min_width=500):
|
| 700 |
+
result_image_flux = gr.Image(interactive=False, label="Result")
|
| 701 |
+
|
| 702 |
+
image_path_flux.change(
|
| 703 |
+
person_example_fn, inputs=image_path_flux, outputs=person_image_flux
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
submit_flux.click(
|
| 707 |
+
submit_function_flux,
|
| 708 |
+
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type],
|
| 709 |
+
result_image_flux,
|
| 710 |
+
)
|
| 711 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
demo.queue().launch(share=True, show_error=True)
|
| 713 |
|
| 714 |
|
model/flux/pipeline_flux_tryon.py
ADDED
|
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 7 |
+
from diffusers.loaders import (
|
| 8 |
+
FluxLoraLoaderMixin,
|
| 9 |
+
FromSingleFileMixin,
|
| 10 |
+
TextualInversionLoaderMixin,
|
| 11 |
+
)
|
| 12 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 13 |
+
from diffusers.pipelines.flux.pipeline_flux_fill import (
|
| 14 |
+
calculate_shift,
|
| 15 |
+
retrieve_latents,
|
| 16 |
+
retrieve_timesteps,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 19 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 20 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 21 |
+
from diffusers.utils import logging
|
| 22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 23 |
+
|
| 24 |
+
from model.flux.transformer_flux import FluxTransformer2DModel
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 27 |
+
|
| 28 |
+
# Modified from `diffusers.pipelines.flux.pipeline_flux_fill.FluxFillPipeline`
|
| 29 |
+
class FluxTryOnPipeline(
|
| 30 |
+
DiffusionPipeline,
|
| 31 |
+
FluxLoraLoaderMixin,
|
| 32 |
+
FromSingleFileMixin,
|
| 33 |
+
TextualInversionLoaderMixin,
|
| 34 |
+
):
|
| 35 |
+
model_cpu_offload_seq = "transformer->vae"
|
| 36 |
+
_optional_components = []
|
| 37 |
+
_callback_tensor_inputs = ["latents"]
|
| 38 |
+
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
vae: AutoencoderKL,
|
| 42 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 43 |
+
transformer: FluxTransformer2DModel,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.register_modules(
|
| 47 |
+
vae=vae,
|
| 48 |
+
scheduler=scheduler,
|
| 49 |
+
transformer=transformer,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
self.vae_scale_factor = (
|
| 53 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
| 57 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
| 58 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
| 59 |
+
self.mask_processor = VaeImageProcessor(
|
| 60 |
+
vae_scale_factor=self.vae_scale_factor * 2,
|
| 61 |
+
vae_latent_channels=self.vae.config.latent_channels,
|
| 62 |
+
do_normalize=False,
|
| 63 |
+
do_binarize=True,
|
| 64 |
+
do_convert_grayscale=True,
|
| 65 |
+
)
|
| 66 |
+
self.default_sample_size = 128
|
| 67 |
+
|
| 68 |
+
self.transformer.remove_text_layers() # TryOnEdit: remove text layers
|
| 69 |
+
|
| 70 |
+
@classmethod
|
| 71 |
+
def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None, **kwargs):
|
| 72 |
+
transformer = FluxTransformer2DModel.from_pretrained(pretrained_model_name_or_path, subfolder="transformer")
|
| 73 |
+
transformer.remove_text_layers()
|
| 74 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
| 75 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
| 76 |
+
return FluxTryOnPipeline(vae, scheduler, transformer)
|
| 77 |
+
|
| 78 |
+
def prepare_mask_latents(
|
| 79 |
+
self,
|
| 80 |
+
mask,
|
| 81 |
+
masked_image,
|
| 82 |
+
batch_size,
|
| 83 |
+
num_channels_latents,
|
| 84 |
+
num_images_per_prompt,
|
| 85 |
+
height,
|
| 86 |
+
width,
|
| 87 |
+
dtype,
|
| 88 |
+
device,
|
| 89 |
+
generator,
|
| 90 |
+
):
|
| 91 |
+
# 1. calculate the height and width of the latents
|
| 92 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
| 93 |
+
# latent height and width to be divisible by 2.
|
| 94 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
| 95 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
| 96 |
+
|
| 97 |
+
# 2. encode the masked image
|
| 98 |
+
if masked_image.shape[1] == num_channels_latents:
|
| 99 |
+
masked_image_latents = masked_image
|
| 100 |
+
else:
|
| 101 |
+
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
| 102 |
+
|
| 103 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 104 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 105 |
+
|
| 106 |
+
# 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 107 |
+
batch_size = batch_size * num_images_per_prompt
|
| 108 |
+
if mask.shape[0] < batch_size:
|
| 109 |
+
if not batch_size % mask.shape[0] == 0:
|
| 110 |
+
raise ValueError(
|
| 111 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 112 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 113 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 114 |
+
)
|
| 115 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 116 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 117 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 118 |
+
raise ValueError(
|
| 119 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 120 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 121 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 122 |
+
)
|
| 123 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
| 124 |
+
|
| 125 |
+
# 4. pack the masked_image_latents
|
| 126 |
+
# batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4
|
| 127 |
+
masked_image_latents = self._pack_latents(
|
| 128 |
+
masked_image_latents,
|
| 129 |
+
batch_size,
|
| 130 |
+
num_channels_latents,
|
| 131 |
+
height,
|
| 132 |
+
width,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# 5.resize mask to latents shape we we concatenate the mask to the latents
|
| 136 |
+
mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed)
|
| 137 |
+
mask = mask.view(
|
| 138 |
+
batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor
|
| 139 |
+
) # batch_size, height, 8, width, 8
|
| 140 |
+
mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width
|
| 141 |
+
mask = mask.reshape(
|
| 142 |
+
batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width
|
| 143 |
+
) # batch_size, 8*8, height, width
|
| 144 |
+
|
| 145 |
+
# 6. pack the mask:
|
| 146 |
+
# batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2
|
| 147 |
+
mask = self._pack_latents(
|
| 148 |
+
mask,
|
| 149 |
+
batch_size,
|
| 150 |
+
self.vae_scale_factor * self.vae_scale_factor,
|
| 151 |
+
height,
|
| 152 |
+
width,
|
| 153 |
+
)
|
| 154 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 155 |
+
|
| 156 |
+
return mask, masked_image_latents
|
| 157 |
+
|
| 158 |
+
def check_inputs(
|
| 159 |
+
self,
|
| 160 |
+
height,
|
| 161 |
+
width,
|
| 162 |
+
callback_on_step_end_tensor_inputs=None,
|
| 163 |
+
max_sequence_length=None,
|
| 164 |
+
image=None,
|
| 165 |
+
mask_image=None,
|
| 166 |
+
condition_image=None,
|
| 167 |
+
masked_image_latents=None,
|
| 168 |
+
):
|
| 169 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
| 170 |
+
logger.warning(
|
| 171 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 175 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 176 |
+
):
|
| 177 |
+
raise ValueError(
|
| 178 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 182 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 183 |
+
|
| 184 |
+
if image is not None and masked_image_latents is not None:
|
| 185 |
+
raise ValueError(
|
| 186 |
+
"Please provide either `image` or `masked_image_latents`, `masked_image_latents` should not be passed."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if image is not None and mask_image is None:
|
| 190 |
+
raise ValueError("Please provide `mask_image` when passing `image`.")
|
| 191 |
+
|
| 192 |
+
if condition_image is None:
|
| 193 |
+
raise ValueError("Please provide `condition_image`.")
|
| 194 |
+
|
| 195 |
+
@staticmethod
|
| 196 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
|
| 197 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 198 |
+
latent_image_ids = torch.zeros(height, width, 3)
|
| 199 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
| 200 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
| 201 |
+
|
| 202 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 203 |
+
|
| 204 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 205 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 209 |
+
|
| 210 |
+
@staticmethod
|
| 211 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
|
| 212 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 213 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 214 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 215 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 216 |
+
|
| 217 |
+
return latents
|
| 218 |
+
|
| 219 |
+
@staticmethod
|
| 220 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
|
| 221 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 222 |
+
batch_size, num_patches, channels = latents.shape
|
| 223 |
+
|
| 224 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
| 225 |
+
# latent height and width to be divisible by 2.
|
| 226 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
| 227 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
| 228 |
+
|
| 229 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
| 230 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 231 |
+
|
| 232 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
| 233 |
+
|
| 234 |
+
return latents
|
| 235 |
+
|
| 236 |
+
def enable_vae_slicing(self):
|
| 237 |
+
r"""
|
| 238 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 239 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 240 |
+
"""
|
| 241 |
+
self.vae.enable_slicing()
|
| 242 |
+
|
| 243 |
+
def disable_vae_slicing(self):
|
| 244 |
+
r"""
|
| 245 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 246 |
+
computing decoding in one step.
|
| 247 |
+
"""
|
| 248 |
+
self.vae.disable_slicing()
|
| 249 |
+
|
| 250 |
+
def enable_vae_tiling(self):
|
| 251 |
+
r"""
|
| 252 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 253 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 254 |
+
processing larger images.
|
| 255 |
+
"""
|
| 256 |
+
self.vae.enable_tiling()
|
| 257 |
+
|
| 258 |
+
def disable_vae_tiling(self):
|
| 259 |
+
r"""
|
| 260 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 261 |
+
computing decoding in one step.
|
| 262 |
+
"""
|
| 263 |
+
self.vae.disable_tiling()
|
| 264 |
+
|
| 265 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
|
| 266 |
+
def prepare_latents(
|
| 267 |
+
self,
|
| 268 |
+
batch_size,
|
| 269 |
+
num_channels_latents,
|
| 270 |
+
height,
|
| 271 |
+
width,
|
| 272 |
+
dtype,
|
| 273 |
+
device,
|
| 274 |
+
generator,
|
| 275 |
+
latents=None,
|
| 276 |
+
):
|
| 277 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
| 278 |
+
# latent height and width to be divisible by 2.
|
| 279 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
| 280 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
| 281 |
+
|
| 282 |
+
shape = (batch_size, num_channels_latents, height, width)
|
| 283 |
+
|
| 284 |
+
if latents is not None:
|
| 285 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
| 286 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
| 287 |
+
|
| 288 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 289 |
+
raise ValueError(
|
| 290 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 291 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 295 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
| 296 |
+
|
| 297 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
| 298 |
+
|
| 299 |
+
return latents, latent_image_ids
|
| 300 |
+
|
| 301 |
+
@property
|
| 302 |
+
def guidance_scale(self):
|
| 303 |
+
return self._guidance_scale
|
| 304 |
+
|
| 305 |
+
@property
|
| 306 |
+
def joint_attention_kwargs(self):
|
| 307 |
+
return self._joint_attention_kwargs
|
| 308 |
+
|
| 309 |
+
@property
|
| 310 |
+
def num_timesteps(self):
|
| 311 |
+
return self._num_timesteps
|
| 312 |
+
|
| 313 |
+
@property
|
| 314 |
+
def interrupt(self):
|
| 315 |
+
return self._interrupt
|
| 316 |
+
|
| 317 |
+
@torch.no_grad()
|
| 318 |
+
def __call__(
|
| 319 |
+
self,
|
| 320 |
+
image: Optional[torch.FloatTensor] = None,
|
| 321 |
+
condition_image: Optional[torch.FloatTensor] = None, # TryOnEdit: condition image (garment)
|
| 322 |
+
mask_image: Optional[torch.FloatTensor] = None,
|
| 323 |
+
masked_image_latents: Optional[torch.FloatTensor] = None,
|
| 324 |
+
height: Optional[int] = None,
|
| 325 |
+
width: Optional[int] = None,
|
| 326 |
+
num_inference_steps: int = 50,
|
| 327 |
+
sigmas: Optional[List[float]] = None,
|
| 328 |
+
guidance_scale: float = 30.0,
|
| 329 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 330 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 331 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 332 |
+
output_type: Optional[str] = "pil",
|
| 333 |
+
return_dict: bool = True,
|
| 334 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 335 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 336 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 337 |
+
max_sequence_length: int = 512,
|
| 338 |
+
):
|
| 339 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 340 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 341 |
+
|
| 342 |
+
# 1. Check inputs. Raise error if not correct
|
| 343 |
+
self.check_inputs(
|
| 344 |
+
height,
|
| 345 |
+
width,
|
| 346 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 347 |
+
max_sequence_length=max_sequence_length,
|
| 348 |
+
image=image,
|
| 349 |
+
mask_image=mask_image,
|
| 350 |
+
condition_image=condition_image,
|
| 351 |
+
masked_image_latents=masked_image_latents,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
self._guidance_scale = guidance_scale
|
| 355 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 356 |
+
self._interrupt = False
|
| 357 |
+
|
| 358 |
+
# 2. Define call parameters
|
| 359 |
+
batch_size = 1
|
| 360 |
+
device = self._execution_device
|
| 361 |
+
dtype = self.transformer.dtype
|
| 362 |
+
|
| 363 |
+
# 3. Prepare prompt embeddings
|
| 364 |
+
lora_scale = (
|
| 365 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
# 4. Prepare latent variables
|
| 369 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 370 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 371 |
+
batch_size * num_images_per_prompt,
|
| 372 |
+
num_channels_latents,
|
| 373 |
+
height,
|
| 374 |
+
width * 2, # TryOnEdit: width * 2
|
| 375 |
+
dtype,
|
| 376 |
+
device,
|
| 377 |
+
generator,
|
| 378 |
+
latents,
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
# 5. Prepare mask and masked image latents
|
| 382 |
+
if masked_image_latents is not None:
|
| 383 |
+
masked_image_latents = masked_image_latents.to(latents.device)
|
| 384 |
+
else:
|
| 385 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
| 386 |
+
condition_image = self.image_processor.preprocess(condition_image, height=height, width=width)
|
| 387 |
+
mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)
|
| 388 |
+
|
| 389 |
+
masked_image = image * (1 - mask_image)
|
| 390 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 391 |
+
|
| 392 |
+
# TryOnEdit: Concat condition image to masked image
|
| 393 |
+
condition_image = condition_image.to(device=device, dtype=dtype)
|
| 394 |
+
masked_image = torch.cat((masked_image, condition_image), dim=-1)
|
| 395 |
+
mask_image = torch.cat((mask_image, torch.zeros_like(mask_image)), dim=-1)
|
| 396 |
+
|
| 397 |
+
height, width = image.shape[-2:]
|
| 398 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
| 399 |
+
mask_image,
|
| 400 |
+
masked_image,
|
| 401 |
+
batch_size,
|
| 402 |
+
num_channels_latents,
|
| 403 |
+
num_images_per_prompt,
|
| 404 |
+
height,
|
| 405 |
+
width * 2, # TryOnEdit: width * 2
|
| 406 |
+
dtype,
|
| 407 |
+
device,
|
| 408 |
+
generator,
|
| 409 |
+
)
|
| 410 |
+
masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1)
|
| 411 |
+
|
| 412 |
+
# 6. Prepare timesteps
|
| 413 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 414 |
+
image_seq_len = latents.shape[1]
|
| 415 |
+
mu = calculate_shift(
|
| 416 |
+
image_seq_len,
|
| 417 |
+
self.scheduler.config.base_image_seq_len,
|
| 418 |
+
self.scheduler.config.max_image_seq_len,
|
| 419 |
+
self.scheduler.config.base_shift,
|
| 420 |
+
self.scheduler.config.max_shift,
|
| 421 |
+
)
|
| 422 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 423 |
+
self.scheduler,
|
| 424 |
+
num_inference_steps,
|
| 425 |
+
device,
|
| 426 |
+
sigmas=sigmas,
|
| 427 |
+
mu=mu,
|
| 428 |
+
)
|
| 429 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 430 |
+
self._num_timesteps = len(timesteps)
|
| 431 |
+
|
| 432 |
+
# handle guidance
|
| 433 |
+
if self.transformer.config.guidance_embeds:
|
| 434 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 435 |
+
guidance = guidance.expand(latents.shape[0])
|
| 436 |
+
else:
|
| 437 |
+
guidance = None
|
| 438 |
+
|
| 439 |
+
# 7. Denoising loop
|
| 440 |
+
pooled_prompt_embeds = torch.zeros([latents.shape[0], 768], device=device, dtype=dtype) # TryOnEdit: for now, we don't use pooled prompt embeddings
|
| 441 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 442 |
+
for i, t in enumerate(timesteps):
|
| 443 |
+
if self.interrupt:
|
| 444 |
+
continue
|
| 445 |
+
|
| 446 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 447 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 448 |
+
|
| 449 |
+
noise_pred = self.transformer(
|
| 450 |
+
hidden_states=torch.cat((latents, masked_image_latents), dim=2),
|
| 451 |
+
timestep=timestep / 1000,
|
| 452 |
+
guidance=guidance,
|
| 453 |
+
pooled_projections=pooled_prompt_embeds,
|
| 454 |
+
encoder_hidden_states=None,
|
| 455 |
+
txt_ids=None,
|
| 456 |
+
img_ids=latent_image_ids,
|
| 457 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 458 |
+
return_dict=False,
|
| 459 |
+
)[0]
|
| 460 |
+
|
| 461 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 462 |
+
latents_dtype = latents.dtype
|
| 463 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 464 |
+
|
| 465 |
+
if latents.dtype != latents_dtype:
|
| 466 |
+
if torch.backends.mps.is_available():
|
| 467 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 468 |
+
latents = latents.to(latents_dtype)
|
| 469 |
+
|
| 470 |
+
if callback_on_step_end is not None:
|
| 471 |
+
callback_kwargs = {}
|
| 472 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 473 |
+
callback_kwargs[k] = locals()[k]
|
| 474 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 475 |
+
|
| 476 |
+
latents = callback_outputs.pop("latents", latents)
|
| 477 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 478 |
+
|
| 479 |
+
# call the callback, if provided
|
| 480 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 481 |
+
progress_bar.update()
|
| 482 |
+
|
| 483 |
+
# 8. Post-process the image
|
| 484 |
+
if output_type == "latent":
|
| 485 |
+
image = latents
|
| 486 |
+
else:
|
| 487 |
+
latents = self._unpack_latents(latents, height, width * 2, self.vae_scale_factor) # TryOnEdit: width * 2
|
| 488 |
+
latents = latents.split(latents.shape[-1] // 2, dim=-1)[0] # TryOnEdit: split along the last dimension
|
| 489 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 490 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 491 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 492 |
+
|
| 493 |
+
# Offload all models
|
| 494 |
+
self.maybe_free_model_hooks()
|
| 495 |
+
|
| 496 |
+
if not return_dict:
|
| 497 |
+
return (image,)
|
| 498 |
+
|
| 499 |
+
return FluxPipelineOutput(images=image)
|
model/flux/transformer_flux.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 9 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
| 10 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 11 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 12 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
| 13 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 14 |
+
|
| 15 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 16 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 17 |
+
from diffusers.models.attention import FeedForward
|
| 18 |
+
from diffusers.models.attention_processor import (
|
| 19 |
+
Attention,
|
| 20 |
+
AttentionProcessor,
|
| 21 |
+
FusedFluxAttnProcessor2_0,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Modified from `diffusers.models.attention_processor.FluxAttnProcessor2_0`
|
| 28 |
+
class FluxAttnProcessor2_0:
|
| 29 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 30 |
+
|
| 31 |
+
def __init__(self):
|
| 32 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 33 |
+
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 34 |
+
|
| 35 |
+
def __call__(
|
| 36 |
+
self,
|
| 37 |
+
attn: Attention,
|
| 38 |
+
hidden_states: torch.FloatTensor,
|
| 39 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 40 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 41 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 42 |
+
) -> torch.FloatTensor:
|
| 43 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 44 |
+
|
| 45 |
+
# `sample` projections.
|
| 46 |
+
query = attn.to_q(hidden_states)
|
| 47 |
+
key = attn.to_k(hidden_states)
|
| 48 |
+
value = attn.to_v(hidden_states)
|
| 49 |
+
|
| 50 |
+
inner_dim = key.shape[-1]
|
| 51 |
+
head_dim = inner_dim // attn.heads
|
| 52 |
+
|
| 53 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 54 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 55 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 56 |
+
|
| 57 |
+
if attn.norm_q is not None:
|
| 58 |
+
query = attn.norm_q(query)
|
| 59 |
+
if attn.norm_k is not None:
|
| 60 |
+
key = attn.norm_k(key)
|
| 61 |
+
|
| 62 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
| 63 |
+
if encoder_hidden_states is not None:
|
| 64 |
+
# `context` projections.
|
| 65 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 66 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 67 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 68 |
+
|
| 69 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 70 |
+
batch_size, -1, attn.heads, head_dim
|
| 71 |
+
).transpose(1, 2)
|
| 72 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 73 |
+
batch_size, -1, attn.heads, head_dim
|
| 74 |
+
).transpose(1, 2)
|
| 75 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 76 |
+
batch_size, -1, attn.heads, head_dim
|
| 77 |
+
).transpose(1, 2)
|
| 78 |
+
|
| 79 |
+
if attn.norm_added_q is not None:
|
| 80 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
| 81 |
+
if attn.norm_added_k is not None:
|
| 82 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
| 83 |
+
|
| 84 |
+
# attention
|
| 85 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 86 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 87 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 88 |
+
|
| 89 |
+
if image_rotary_emb is not None:
|
| 90 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 91 |
+
|
| 92 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 93 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 94 |
+
|
| 95 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 96 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 97 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 98 |
+
|
| 99 |
+
if encoder_hidden_states is not None:
|
| 100 |
+
encoder_hidden_states, hidden_states = (
|
| 101 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 102 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 103 |
+
)
|
| 104 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 105 |
+
|
| 106 |
+
# edited for try-on
|
| 107 |
+
if not attn.pre_only:
|
| 108 |
+
# linear proj
|
| 109 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 110 |
+
# dropout
|
| 111 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 112 |
+
|
| 113 |
+
if encoder_hidden_states is not None:
|
| 114 |
+
return hidden_states, encoder_hidden_states
|
| 115 |
+
else:
|
| 116 |
+
return hidden_states
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@maybe_allow_in_graph
|
| 120 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 121 |
+
r"""
|
| 122 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 123 |
+
|
| 124 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 125 |
+
|
| 126 |
+
Parameters:
|
| 127 |
+
dim (`int`): The number of channels in the input and output.
|
| 128 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 129 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 130 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 131 |
+
processing of `context` conditions.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 137 |
+
|
| 138 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 139 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 140 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 141 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 142 |
+
|
| 143 |
+
processor = FluxAttnProcessor2_0()
|
| 144 |
+
self.attn = Attention(
|
| 145 |
+
query_dim=dim,
|
| 146 |
+
cross_attention_dim=None,
|
| 147 |
+
dim_head=attention_head_dim,
|
| 148 |
+
heads=num_attention_heads,
|
| 149 |
+
out_dim=dim,
|
| 150 |
+
bias=True,
|
| 151 |
+
processor=processor,
|
| 152 |
+
qk_norm="rms_norm",
|
| 153 |
+
eps=1e-6,
|
| 154 |
+
pre_only=True,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
def forward(
|
| 158 |
+
self,
|
| 159 |
+
hidden_states: torch.FloatTensor,
|
| 160 |
+
temb: torch.FloatTensor,
|
| 161 |
+
image_rotary_emb=None,
|
| 162 |
+
joint_attention_kwargs=None,
|
| 163 |
+
):
|
| 164 |
+
residual = hidden_states
|
| 165 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 166 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 167 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 168 |
+
attn_output = self.attn(
|
| 169 |
+
hidden_states=norm_hidden_states,
|
| 170 |
+
image_rotary_emb=image_rotary_emb,
|
| 171 |
+
**joint_attention_kwargs,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 175 |
+
gate = gate.unsqueeze(1)
|
| 176 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 177 |
+
hidden_states = residual + hidden_states
|
| 178 |
+
if hidden_states.dtype == torch.float16:
|
| 179 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 180 |
+
|
| 181 |
+
return hidden_states
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@maybe_allow_in_graph
|
| 185 |
+
class FluxTransformerBlock(nn.Module):
|
| 186 |
+
r"""
|
| 187 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 188 |
+
|
| 189 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 190 |
+
|
| 191 |
+
Parameters:
|
| 192 |
+
dim (`int`): The number of channels in the input and output.
|
| 193 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 194 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 195 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 196 |
+
processing of `context` conditions.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
| 200 |
+
super().__init__()
|
| 201 |
+
|
| 202 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 203 |
+
|
| 204 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 205 |
+
|
| 206 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 207 |
+
processor = FluxAttnProcessor2_0()
|
| 208 |
+
else:
|
| 209 |
+
raise ValueError(
|
| 210 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 211 |
+
)
|
| 212 |
+
self.attn = Attention(
|
| 213 |
+
query_dim=dim,
|
| 214 |
+
cross_attention_dim=None,
|
| 215 |
+
added_kv_proj_dim=dim,
|
| 216 |
+
dim_head=attention_head_dim,
|
| 217 |
+
heads=num_attention_heads,
|
| 218 |
+
out_dim=dim,
|
| 219 |
+
context_pre_only=False,
|
| 220 |
+
bias=True,
|
| 221 |
+
processor=processor,
|
| 222 |
+
qk_norm=qk_norm,
|
| 223 |
+
eps=eps,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 227 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 228 |
+
|
| 229 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 230 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 231 |
+
|
| 232 |
+
# let chunk size default to None
|
| 233 |
+
self._chunk_size = None
|
| 234 |
+
self._chunk_dim = 0
|
| 235 |
+
|
| 236 |
+
def remove_text_layers(self):
|
| 237 |
+
# for try-on, we don't need the text conditioning
|
| 238 |
+
self.norm1_context = None
|
| 239 |
+
self.ff_context = None
|
| 240 |
+
self.norm2_context = None
|
| 241 |
+
self.attn.to_added_qkv = None
|
| 242 |
+
self.attn.norm_added_q = None
|
| 243 |
+
self.attn.norm_added_k = None
|
| 244 |
+
|
| 245 |
+
def forward(
|
| 246 |
+
self,
|
| 247 |
+
hidden_states: torch.FloatTensor,
|
| 248 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 249 |
+
temb: torch.FloatTensor,
|
| 250 |
+
image_rotary_emb=None,
|
| 251 |
+
joint_attention_kwargs=None,
|
| 252 |
+
):
|
| 253 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 254 |
+
|
| 255 |
+
if encoder_hidden_states is not None:
|
| 256 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 257 |
+
encoder_hidden_states, emb=temb
|
| 258 |
+
)
|
| 259 |
+
else:
|
| 260 |
+
norm_encoder_hidden_states = None
|
| 261 |
+
|
| 262 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 263 |
+
# Attention.
|
| 264 |
+
|
| 265 |
+
outputs = self.attn(
|
| 266 |
+
hidden_states=norm_hidden_states,
|
| 267 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 268 |
+
image_rotary_emb=image_rotary_emb,
|
| 269 |
+
**joint_attention_kwargs,
|
| 270 |
+
)
|
| 271 |
+
if isinstance(outputs, tuple):
|
| 272 |
+
attn_output, context_attn_output = outputs
|
| 273 |
+
else:
|
| 274 |
+
attn_output = outputs
|
| 275 |
+
|
| 276 |
+
# Process attention outputs for the `hidden_states`.
|
| 277 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 278 |
+
hidden_states = hidden_states + attn_output
|
| 279 |
+
|
| 280 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 281 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 282 |
+
|
| 283 |
+
ff_output = self.ff(norm_hidden_states)
|
| 284 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 285 |
+
|
| 286 |
+
hidden_states = hidden_states + ff_output
|
| 287 |
+
|
| 288 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 289 |
+
if encoder_hidden_states is not None:
|
| 290 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 291 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 292 |
+
|
| 293 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 294 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 295 |
+
|
| 296 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 297 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 298 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 299 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 300 |
+
|
| 301 |
+
return encoder_hidden_states, hidden_states
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 305 |
+
"""
|
| 306 |
+
The Transformer model introduced in Flux.
|
| 307 |
+
|
| 308 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 309 |
+
|
| 310 |
+
Parameters:
|
| 311 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 312 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 313 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 314 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 315 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 316 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 317 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 318 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 319 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
_supports_gradient_checkpointing = True
|
| 323 |
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
| 324 |
+
|
| 325 |
+
@register_to_config
|
| 326 |
+
def __init__(
|
| 327 |
+
self,
|
| 328 |
+
patch_size: int = 1,
|
| 329 |
+
in_channels: int = 64,
|
| 330 |
+
out_channels: Optional[int] = None,
|
| 331 |
+
num_layers: int = 19,
|
| 332 |
+
num_single_layers: int = 38,
|
| 333 |
+
attention_head_dim: int = 128,
|
| 334 |
+
num_attention_heads: int = 24,
|
| 335 |
+
joint_attention_dim: int = 4096,
|
| 336 |
+
pooled_projection_dim: int = 768,
|
| 337 |
+
guidance_embeds: bool = False,
|
| 338 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 339 |
+
):
|
| 340 |
+
super().__init__()
|
| 341 |
+
self.out_channels = out_channels or in_channels
|
| 342 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 343 |
+
|
| 344 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 345 |
+
|
| 346 |
+
text_time_guidance_cls = (
|
| 347 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 348 |
+
)
|
| 349 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 350 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
| 354 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
| 355 |
+
|
| 356 |
+
self.transformer_blocks = nn.ModuleList(
|
| 357 |
+
[
|
| 358 |
+
FluxTransformerBlock(
|
| 359 |
+
dim=self.inner_dim,
|
| 360 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 361 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 362 |
+
)
|
| 363 |
+
for i in range(self.config.num_layers)
|
| 364 |
+
]
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 368 |
+
[
|
| 369 |
+
FluxSingleTransformerBlock(
|
| 370 |
+
dim=self.inner_dim,
|
| 371 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 372 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 373 |
+
)
|
| 374 |
+
for i in range(self.config.num_single_layers)
|
| 375 |
+
]
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 379 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 380 |
+
|
| 381 |
+
self.gradient_checkpointing = False
|
| 382 |
+
|
| 383 |
+
@property
|
| 384 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 385 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 386 |
+
r"""
|
| 387 |
+
Returns:
|
| 388 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 389 |
+
indexed by its weight name.
|
| 390 |
+
"""
|
| 391 |
+
# set recursively
|
| 392 |
+
processors = {}
|
| 393 |
+
|
| 394 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 395 |
+
if hasattr(module, "get_processor"):
|
| 396 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 397 |
+
|
| 398 |
+
for sub_name, child in module.named_children():
|
| 399 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 400 |
+
|
| 401 |
+
return processors
|
| 402 |
+
|
| 403 |
+
for name, module in self.named_children():
|
| 404 |
+
fn_recursive_add_processors(name, module, processors)
|
| 405 |
+
|
| 406 |
+
return processors
|
| 407 |
+
|
| 408 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 409 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 410 |
+
r"""
|
| 411 |
+
Sets the attention processor to use to compute attention.
|
| 412 |
+
|
| 413 |
+
Parameters:
|
| 414 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 415 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 416 |
+
for **all** `Attention` layers.
|
| 417 |
+
|
| 418 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 419 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 420 |
+
|
| 421 |
+
"""
|
| 422 |
+
count = len(self.attn_processors.keys())
|
| 423 |
+
|
| 424 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 425 |
+
raise ValueError(
|
| 426 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 427 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 431 |
+
if hasattr(module, "set_processor"):
|
| 432 |
+
if not isinstance(processor, dict):
|
| 433 |
+
module.set_processor(processor)
|
| 434 |
+
else:
|
| 435 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 436 |
+
|
| 437 |
+
for sub_name, child in module.named_children():
|
| 438 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 439 |
+
|
| 440 |
+
for name, module in self.named_children():
|
| 441 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 442 |
+
|
| 443 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
| 444 |
+
def fuse_qkv_projections(self):
|
| 445 |
+
"""
|
| 446 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 447 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 448 |
+
|
| 449 |
+
<Tip warning={true}>
|
| 450 |
+
|
| 451 |
+
This API is 🧪 experimental.
|
| 452 |
+
|
| 453 |
+
</Tip>
|
| 454 |
+
"""
|
| 455 |
+
self.original_attn_processors = None
|
| 456 |
+
|
| 457 |
+
for _, attn_processor in self.attn_processors.items():
|
| 458 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 459 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 460 |
+
|
| 461 |
+
self.original_attn_processors = self.attn_processors
|
| 462 |
+
|
| 463 |
+
for module in self.modules():
|
| 464 |
+
if isinstance(module, Attention):
|
| 465 |
+
module.fuse_projections(fuse=True)
|
| 466 |
+
|
| 467 |
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
| 468 |
+
|
| 469 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 470 |
+
def unfuse_qkv_projections(self):
|
| 471 |
+
"""Disables the fused QKV projection if enabled.
|
| 472 |
+
|
| 473 |
+
<Tip warning={true}>
|
| 474 |
+
|
| 475 |
+
This API is 🧪 experimental.
|
| 476 |
+
|
| 477 |
+
</Tip>
|
| 478 |
+
|
| 479 |
+
"""
|
| 480 |
+
if self.original_attn_processors is not None:
|
| 481 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 482 |
+
|
| 483 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 484 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 485 |
+
module.gradient_checkpointing = value
|
| 486 |
+
|
| 487 |
+
def remove_text_layers(self):
|
| 488 |
+
self.context_embedder = None
|
| 489 |
+
for transformer_block in self.transformer_blocks:
|
| 490 |
+
transformer_block.remove_text_layers()
|
| 491 |
+
|
| 492 |
+
def forward(
|
| 493 |
+
self,
|
| 494 |
+
hidden_states: torch.Tensor,
|
| 495 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 496 |
+
condition_hidden_states: torch.Tensor = None,
|
| 497 |
+
pooled_projections: torch.Tensor = None,
|
| 498 |
+
timestep: torch.LongTensor = None,
|
| 499 |
+
img_ids: torch.Tensor = None,
|
| 500 |
+
txt_ids: torch.Tensor = None,
|
| 501 |
+
guidance: torch.Tensor = None,
|
| 502 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 503 |
+
controlnet_block_samples=None,
|
| 504 |
+
controlnet_single_block_samples=None,
|
| 505 |
+
return_dict: bool = True,
|
| 506 |
+
controlnet_blocks_repeat: bool = False,
|
| 507 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 508 |
+
"""
|
| 509 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 510 |
+
|
| 511 |
+
Args:
|
| 512 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 513 |
+
Input `hidden_states`.
|
| 514 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 515 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 516 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 517 |
+
from the embeddings of input conditions.
|
| 518 |
+
timestep ( `torch.LongTensor`):
|
| 519 |
+
Used to indicate denoising step.
|
| 520 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 521 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 522 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 523 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 524 |
+
`self.processor` in
|
| 525 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 526 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 527 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 528 |
+
tuple.
|
| 529 |
+
|
| 530 |
+
Returns:
|
| 531 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 532 |
+
`tuple` where the first element is the sample tensor.
|
| 533 |
+
"""
|
| 534 |
+
if joint_attention_kwargs is not None:
|
| 535 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 536 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 537 |
+
else:
|
| 538 |
+
lora_scale = 1.0
|
| 539 |
+
|
| 540 |
+
if USE_PEFT_BACKEND:
|
| 541 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 542 |
+
scale_lora_layers(self, lora_scale)
|
| 543 |
+
else:
|
| 544 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 545 |
+
logger.warning(
|
| 546 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 550 |
+
|
| 551 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 552 |
+
guidance = guidance.to(hidden_states.dtype) * 1000 if guidance is not None else None
|
| 553 |
+
|
| 554 |
+
temb = self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 555 |
+
|
| 556 |
+
if encoder_hidden_states is not None:
|
| 557 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 558 |
+
|
| 559 |
+
ids = torch.cat((txt_ids, img_ids), dim=0) if txt_ids is not None else img_ids # for try-on, we don't need txt_ids
|
| 560 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 561 |
+
|
| 562 |
+
# MMDiT Blocks
|
| 563 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 564 |
+
if self.training and self.gradient_checkpointing:
|
| 565 |
+
def create_custom_forward(module, return_dict=None):
|
| 566 |
+
def custom_forward(*inputs):
|
| 567 |
+
if return_dict is not None:
|
| 568 |
+
return module(*inputs, return_dict=return_dict)
|
| 569 |
+
else:
|
| 570 |
+
return module(*inputs)
|
| 571 |
+
|
| 572 |
+
return custom_forward
|
| 573 |
+
|
| 574 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 575 |
+
result = torch.utils.checkpoint.checkpoint(
|
| 576 |
+
create_custom_forward(block),
|
| 577 |
+
hidden_states,
|
| 578 |
+
encoder_hidden_states,
|
| 579 |
+
temb,
|
| 580 |
+
image_rotary_emb,
|
| 581 |
+
**ckpt_kwargs,
|
| 582 |
+
)
|
| 583 |
+
if isinstance(result, tuple):
|
| 584 |
+
encoder_hidden_states, hidden_states = result
|
| 585 |
+
else:
|
| 586 |
+
hidden_states = result
|
| 587 |
+
|
| 588 |
+
else:
|
| 589 |
+
result = block(
|
| 590 |
+
hidden_states=hidden_states,
|
| 591 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 592 |
+
temb=temb,
|
| 593 |
+
image_rotary_emb=image_rotary_emb,
|
| 594 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 595 |
+
)
|
| 596 |
+
if isinstance(result, tuple):
|
| 597 |
+
encoder_hidden_states, hidden_states = result
|
| 598 |
+
else:
|
| 599 |
+
hidden_states = result
|
| 600 |
+
|
| 601 |
+
# Condition residual (for try-on pose conditioning)
|
| 602 |
+
if condition_hidden_states is not None and index_block == 0:
|
| 603 |
+
hidden_states = hidden_states + condition_hidden_states
|
| 604 |
+
|
| 605 |
+
# controlnet residual
|
| 606 |
+
if controlnet_block_samples is not None:
|
| 607 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 608 |
+
interval_control = int(np.ceil(interval_control))
|
| 609 |
+
# For Xlabs ControlNet.
|
| 610 |
+
if controlnet_blocks_repeat:
|
| 611 |
+
hidden_states = (
|
| 612 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
| 613 |
+
)
|
| 614 |
+
else:
|
| 615 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 616 |
+
|
| 617 |
+
if encoder_hidden_states is not None:
|
| 618 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 619 |
+
|
| 620 |
+
# Single DiT Blocks
|
| 621 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 622 |
+
if self.training and self.gradient_checkpointing:
|
| 623 |
+
|
| 624 |
+
def create_custom_forward(module, return_dict=None):
|
| 625 |
+
def custom_forward(*inputs):
|
| 626 |
+
if return_dict is not None:
|
| 627 |
+
return module(*inputs, return_dict=return_dict)
|
| 628 |
+
else:
|
| 629 |
+
return module(*inputs)
|
| 630 |
+
|
| 631 |
+
return custom_forward
|
| 632 |
+
|
| 633 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 634 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 635 |
+
create_custom_forward(block),
|
| 636 |
+
hidden_states,
|
| 637 |
+
temb,
|
| 638 |
+
image_rotary_emb,
|
| 639 |
+
**ckpt_kwargs,
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
else:
|
| 643 |
+
hidden_states = block(
|
| 644 |
+
hidden_states=hidden_states,
|
| 645 |
+
temb=temb,
|
| 646 |
+
image_rotary_emb=image_rotary_emb,
|
| 647 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
# controlnet residual
|
| 651 |
+
if controlnet_single_block_samples is not None:
|
| 652 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 653 |
+
interval_control = int(np.ceil(interval_control))
|
| 654 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 655 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 656 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
if encoder_hidden_states is not None:
|
| 660 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 661 |
+
|
| 662 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 663 |
+
output = self.proj_out(hidden_states)
|
| 664 |
+
|
| 665 |
+
if USE_PEFT_BACKEND:
|
| 666 |
+
# remove `lora_scale` from each PEFT layer
|
| 667 |
+
unscale_lora_layers(self, lora_scale)
|
| 668 |
+
|
| 669 |
+
if not return_dict:
|
| 670 |
+
return (output,)
|
| 671 |
+
|
| 672 |
+
return Transformer2DModelOutput(sample=output)
|
model/pipeline.py
CHANGED
|
@@ -213,3 +213,120 @@ class CatVTONPipeline:
|
|
| 213 |
if not_safe:
|
| 214 |
image[i] = nsfw_image
|
| 215 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
if not_safe:
|
| 214 |
image[i] = nsfw_image
|
| 215 |
return image
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class CatVTONPix2PixPipeline(CatVTONPipeline):
|
| 219 |
+
def auto_attn_ckpt_load(self, attn_ckpt, version):
|
| 220 |
+
# TODO: Temperal fix for the model version
|
| 221 |
+
if os.path.exists(attn_ckpt):
|
| 222 |
+
load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, version, 'attention'))
|
| 223 |
+
else:
|
| 224 |
+
repo_path = snapshot_download(repo_id=attn_ckpt)
|
| 225 |
+
print(f"Downloaded {attn_ckpt} to {repo_path}")
|
| 226 |
+
load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, version, 'attention'))
|
| 227 |
+
|
| 228 |
+
def check_inputs(self, image, condition_image, width, height):
|
| 229 |
+
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(torch.Tensor):
|
| 230 |
+
return image, condition_image
|
| 231 |
+
image = resize_and_crop(image, (width, height))
|
| 232 |
+
condition_image = resize_and_padding(condition_image, (width, height))
|
| 233 |
+
return image, condition_image
|
| 234 |
+
|
| 235 |
+
@torch.no_grad()
|
| 236 |
+
def __call__(
|
| 237 |
+
self,
|
| 238 |
+
image: Union[PIL.Image.Image, torch.Tensor],
|
| 239 |
+
condition_image: Union[PIL.Image.Image, torch.Tensor],
|
| 240 |
+
num_inference_steps: int = 50,
|
| 241 |
+
guidance_scale: float = 2.5,
|
| 242 |
+
height: int = 1024,
|
| 243 |
+
width: int = 768,
|
| 244 |
+
generator=None,
|
| 245 |
+
eta=1.0,
|
| 246 |
+
**kwargs
|
| 247 |
+
):
|
| 248 |
+
concat_dim = -1
|
| 249 |
+
# Prepare inputs to Tensor
|
| 250 |
+
image, condition_image = self.check_inputs(image, condition_image, width, height)
|
| 251 |
+
image = prepare_image(image).to(self.device, dtype=self.weight_dtype)
|
| 252 |
+
condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)
|
| 253 |
+
# VAE encoding
|
| 254 |
+
image_latent = compute_vae_encodings(image, self.vae)
|
| 255 |
+
condition_latent = compute_vae_encodings(condition_image, self.vae)
|
| 256 |
+
del image, condition_image
|
| 257 |
+
# Concatenate latents
|
| 258 |
+
condition_latent_concat = torch.cat([image_latent, condition_latent], dim=concat_dim)
|
| 259 |
+
# Prepare noise
|
| 260 |
+
latents = randn_tensor(
|
| 261 |
+
condition_latent_concat.shape,
|
| 262 |
+
generator=generator,
|
| 263 |
+
device=condition_latent_concat.device,
|
| 264 |
+
dtype=self.weight_dtype,
|
| 265 |
+
)
|
| 266 |
+
# Prepare timesteps
|
| 267 |
+
self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 268 |
+
timesteps = self.noise_scheduler.timesteps
|
| 269 |
+
latents = latents * self.noise_scheduler.init_noise_sigma
|
| 270 |
+
# Classifier-Free Guidance
|
| 271 |
+
if do_classifier_free_guidance := (guidance_scale > 1.0):
|
| 272 |
+
condition_latent_concat = torch.cat(
|
| 273 |
+
[
|
| 274 |
+
torch.cat([image_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
|
| 275 |
+
condition_latent_concat,
|
| 276 |
+
]
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Denoising loop
|
| 280 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 281 |
+
num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
|
| 282 |
+
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
|
| 283 |
+
for i, t in enumerate(timesteps):
|
| 284 |
+
# expand the latents if we are doing classifier free guidance
|
| 285 |
+
latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
|
| 286 |
+
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, t)
|
| 287 |
+
# prepare the input for the inpainting model
|
| 288 |
+
p2p_latent_model_input = torch.cat([latent_model_input, condition_latent_concat], dim=1)
|
| 289 |
+
# predict the noise residual
|
| 290 |
+
noise_pred= self.unet(
|
| 291 |
+
p2p_latent_model_input,
|
| 292 |
+
t.to(self.device),
|
| 293 |
+
encoder_hidden_states=None,
|
| 294 |
+
return_dict=False,
|
| 295 |
+
)[0]
|
| 296 |
+
# perform guidance
|
| 297 |
+
if do_classifier_free_guidance:
|
| 298 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 299 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 300 |
+
noise_pred_text - noise_pred_uncond
|
| 301 |
+
)
|
| 302 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 303 |
+
latents = self.noise_scheduler.step(
|
| 304 |
+
noise_pred, t, latents, **extra_step_kwargs
|
| 305 |
+
).prev_sample
|
| 306 |
+
# call the callback, if provided
|
| 307 |
+
if i == len(timesteps) - 1 or (
|
| 308 |
+
(i + 1) > num_warmup_steps
|
| 309 |
+
and (i + 1) % self.noise_scheduler.order == 0
|
| 310 |
+
):
|
| 311 |
+
progress_bar.update()
|
| 312 |
+
|
| 313 |
+
# Decode the final latents
|
| 314 |
+
latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
|
| 315 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 316 |
+
image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample
|
| 317 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 318 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 319 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 320 |
+
image = numpy_to_pil(image)
|
| 321 |
+
|
| 322 |
+
# Safety Check
|
| 323 |
+
if not self.skip_safety_check:
|
| 324 |
+
current_script_directory = os.path.dirname(os.path.realpath(__file__))
|
| 325 |
+
nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg')
|
| 326 |
+
nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size)
|
| 327 |
+
image_np = np.array(image)
|
| 328 |
+
_, has_nsfw_concept = self.run_safety_checker(image=image_np)
|
| 329 |
+
for i, not_safe in enumerate(has_nsfw_concept):
|
| 330 |
+
if not_safe:
|
| 331 |
+
image[i] = nsfw_image
|
| 332 |
+
return image
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
torch==2.1.2
|
| 2 |
torchvision==0.16.2
|
| 3 |
accelerate==0.31.0
|
| 4 |
-
diffusers
|
| 5 |
huggingface_hub==0.23.4
|
| 6 |
matplotlib==3.9.1
|
| 7 |
numpy==1.26.4
|
|
@@ -12,10 +12,11 @@ scipy==1.13.1
|
|
| 12 |
setuptools==51.0.0
|
| 13 |
scikit-image==0.24.0
|
| 14 |
tqdm==4.66.4
|
| 15 |
-
transformers==4.
|
| 16 |
fvcore==0.1.5.post20221221
|
| 17 |
cloudpickle==3.0.0
|
| 18 |
omegaconf==2.3.0
|
| 19 |
pycocotools==2.0.8
|
| 20 |
av==12.3.0
|
| 21 |
-
gradio==4.41.0
|
|
|
|
|
|
| 1 |
torch==2.1.2
|
| 2 |
torchvision==0.16.2
|
| 3 |
accelerate==0.31.0
|
| 4 |
+
git+https://github.com/huggingface/diffusers.git
|
| 5 |
huggingface_hub==0.23.4
|
| 6 |
matplotlib==3.9.1
|
| 7 |
numpy==1.26.4
|
|
|
|
| 12 |
setuptools==51.0.0
|
| 13 |
scikit-image==0.24.0
|
| 14 |
tqdm==4.66.4
|
| 15 |
+
transformers==4.46.3
|
| 16 |
fvcore==0.1.5.post20221221
|
| 17 |
cloudpickle==3.0.0
|
| 18 |
omegaconf==2.3.0
|
| 19 |
pycocotools==2.0.8
|
| 20 |
av==12.3.0
|
| 21 |
+
gradio==4.41.0
|
| 22 |
+
peft==0.14.0
|