Text-to-Image
Merlin
English
Ashwin Kumar commited on
Commit
0c279e1
·
1 Parent(s): 6b3fcfa

uploaded nnunet data

Browse files
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/.DS_Store ADDED
Binary file (6.15 kB). View file
 
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "TotalSegmentator",
3
+ "description": "Segmentation of TotalSegmentator classes",
4
+ "reference": "https://zenodo.org/record/6802614",
5
+ "licence": "Apache 2.0",
6
+ "release": "2.0",
7
+ "channel_names": {
8
+ "0": "CT"
9
+ },
10
+ "labels": {
11
+ "background": 0,
12
+ "spleen": 1,
13
+ "kidney_right": 2,
14
+ "kidney_left": 3,
15
+ "gallbladder": 4,
16
+ "liver": 5,
17
+ "stomach": 6,
18
+ "pancreas": 7,
19
+ "small_bowel": 8,
20
+ "duodenum": 9,
21
+ "colon": 10,
22
+ "urinary_bladder": 11,
23
+ "prostate": 12,
24
+ "kidney_cyst_left": 13,
25
+ "kidney_cyst_right": 14,
26
+ "sacrum": 15,
27
+ "vertebrae_S1": 16,
28
+ "vertebrae_L5": 17,
29
+ "vertebrae_L4": 18,
30
+ "vertebrae_L3": 19,
31
+ "vertebrae_L2": 20,
32
+ "vertebrae_L1": 21,
33
+ "vertebrae_T12": 22
34
+ },
35
+ "numTraining": 367,
36
+ "file_ending": ".nii.gz",
37
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
38
+ }
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
@@ -0,0 +1,3688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "foreground_intensity_properties_per_channel": {
3
+ "0": {
4
+ "max": 1000.0,
5
+ "mean": 32.16546869334803,
6
+ "median": 59.999942779541016,
7
+ "min": -1000.0,
8
+ "percentile_00_5": -1000.0,
9
+ "percentile_99_5": 842.0,
10
+ "std": 242.82777198101266
11
+ }
12
+ },
13
+ "median_relative_size_after_cropping": 1.0,
14
+ "shapes_after_crop": [
15
+ [
16
+ 160,
17
+ 224,
18
+ 224
19
+ ],
20
+ [
21
+ 160,
22
+ 224,
23
+ 224
24
+ ],
25
+ [
26
+ 160,
27
+ 224,
28
+ 224
29
+ ],
30
+ [
31
+ 160,
32
+ 224,
33
+ 224
34
+ ],
35
+ [
36
+ 160,
37
+ 224,
38
+ 224
39
+ ],
40
+ [
41
+ 160,
42
+ 224,
43
+ 224
44
+ ],
45
+ [
46
+ 160,
47
+ 224,
48
+ 224
49
+ ],
50
+ [
51
+ 160,
52
+ 224,
53
+ 224
54
+ ],
55
+ [
56
+ 160,
57
+ 224,
58
+ 224
59
+ ],
60
+ [
61
+ 160,
62
+ 224,
63
+ 224
64
+ ],
65
+ [
66
+ 160,
67
+ 224,
68
+ 224
69
+ ],
70
+ [
71
+ 160,
72
+ 224,
73
+ 224
74
+ ],
75
+ [
76
+ 160,
77
+ 224,
78
+ 224
79
+ ],
80
+ [
81
+ 160,
82
+ 224,
83
+ 224
84
+ ],
85
+ [
86
+ 160,
87
+ 224,
88
+ 224
89
+ ],
90
+ [
91
+ 160,
92
+ 224,
93
+ 224
94
+ ],
95
+ [
96
+ 160,
97
+ 224,
98
+ 224
99
+ ],
100
+ [
101
+ 160,
102
+ 224,
103
+ 224
104
+ ],
105
+ [
106
+ 160,
107
+ 224,
108
+ 224
109
+ ],
110
+ [
111
+ 160,
112
+ 224,
113
+ 224
114
+ ],
115
+ [
116
+ 160,
117
+ 224,
118
+ 224
119
+ ],
120
+ [
121
+ 160,
122
+ 224,
123
+ 224
124
+ ],
125
+ [
126
+ 160,
127
+ 224,
128
+ 224
129
+ ],
130
+ [
131
+ 160,
132
+ 224,
133
+ 224
134
+ ],
135
+ [
136
+ 160,
137
+ 224,
138
+ 224
139
+ ],
140
+ [
141
+ 160,
142
+ 224,
143
+ 224
144
+ ],
145
+ [
146
+ 160,
147
+ 224,
148
+ 224
149
+ ],
150
+ [
151
+ 160,
152
+ 224,
153
+ 224
154
+ ],
155
+ [
156
+ 160,
157
+ 224,
158
+ 224
159
+ ],
160
+ [
161
+ 160,
162
+ 224,
163
+ 224
164
+ ],
165
+ [
166
+ 160,
167
+ 224,
168
+ 224
169
+ ],
170
+ [
171
+ 160,
172
+ 224,
173
+ 224
174
+ ],
175
+ [
176
+ 160,
177
+ 224,
178
+ 224
179
+ ],
180
+ [
181
+ 160,
182
+ 224,
183
+ 224
184
+ ],
185
+ [
186
+ 160,
187
+ 224,
188
+ 224
189
+ ],
190
+ [
191
+ 160,
192
+ 224,
193
+ 224
194
+ ],
195
+ [
196
+ 160,
197
+ 224,
198
+ 224
199
+ ],
200
+ [
201
+ 160,
202
+ 224,
203
+ 224
204
+ ],
205
+ [
206
+ 160,
207
+ 224,
208
+ 224
209
+ ],
210
+ [
211
+ 160,
212
+ 224,
213
+ 224
214
+ ],
215
+ [
216
+ 160,
217
+ 224,
218
+ 224
219
+ ],
220
+ [
221
+ 160,
222
+ 224,
223
+ 224
224
+ ],
225
+ [
226
+ 160,
227
+ 224,
228
+ 224
229
+ ],
230
+ [
231
+ 160,
232
+ 224,
233
+ 224
234
+ ],
235
+ [
236
+ 160,
237
+ 224,
238
+ 224
239
+ ],
240
+ [
241
+ 160,
242
+ 224,
243
+ 224
244
+ ],
245
+ [
246
+ 160,
247
+ 224,
248
+ 224
249
+ ],
250
+ [
251
+ 160,
252
+ 224,
253
+ 224
254
+ ],
255
+ [
256
+ 160,
257
+ 224,
258
+ 224
259
+ ],
260
+ [
261
+ 160,
262
+ 224,
263
+ 224
264
+ ],
265
+ [
266
+ 160,
267
+ 224,
268
+ 224
269
+ ],
270
+ [
271
+ 160,
272
+ 224,
273
+ 224
274
+ ],
275
+ [
276
+ 160,
277
+ 224,
278
+ 224
279
+ ],
280
+ [
281
+ 160,
282
+ 224,
283
+ 224
284
+ ],
285
+ [
286
+ 160,
287
+ 224,
288
+ 224
289
+ ],
290
+ [
291
+ 160,
292
+ 224,
293
+ 224
294
+ ],
295
+ [
296
+ 160,
297
+ 224,
298
+ 224
299
+ ],
300
+ [
301
+ 160,
302
+ 224,
303
+ 224
304
+ ],
305
+ [
306
+ 160,
307
+ 224,
308
+ 224
309
+ ],
310
+ [
311
+ 160,
312
+ 224,
313
+ 224
314
+ ],
315
+ [
316
+ 160,
317
+ 224,
318
+ 224
319
+ ],
320
+ [
321
+ 160,
322
+ 224,
323
+ 224
324
+ ],
325
+ [
326
+ 160,
327
+ 224,
328
+ 224
329
+ ],
330
+ [
331
+ 160,
332
+ 224,
333
+ 224
334
+ ],
335
+ [
336
+ 160,
337
+ 224,
338
+ 224
339
+ ],
340
+ [
341
+ 160,
342
+ 224,
343
+ 224
344
+ ],
345
+ [
346
+ 160,
347
+ 224,
348
+ 224
349
+ ],
350
+ [
351
+ 160,
352
+ 224,
353
+ 224
354
+ ],
355
+ [
356
+ 160,
357
+ 224,
358
+ 224
359
+ ],
360
+ [
361
+ 160,
362
+ 224,
363
+ 224
364
+ ],
365
+ [
366
+ 160,
367
+ 224,
368
+ 224
369
+ ],
370
+ [
371
+ 160,
372
+ 224,
373
+ 224
374
+ ],
375
+ [
376
+ 160,
377
+ 224,
378
+ 224
379
+ ],
380
+ [
381
+ 160,
382
+ 224,
383
+ 224
384
+ ],
385
+ [
386
+ 160,
387
+ 224,
388
+ 224
389
+ ],
390
+ [
391
+ 160,
392
+ 224,
393
+ 224
394
+ ],
395
+ [
396
+ 160,
397
+ 224,
398
+ 224
399
+ ],
400
+ [
401
+ 160,
402
+ 224,
403
+ 224
404
+ ],
405
+ [
406
+ 160,
407
+ 224,
408
+ 224
409
+ ],
410
+ [
411
+ 160,
412
+ 224,
413
+ 224
414
+ ],
415
+ [
416
+ 160,
417
+ 224,
418
+ 224
419
+ ],
420
+ [
421
+ 160,
422
+ 224,
423
+ 224
424
+ ],
425
+ [
426
+ 160,
427
+ 224,
428
+ 224
429
+ ],
430
+ [
431
+ 160,
432
+ 224,
433
+ 224
434
+ ],
435
+ [
436
+ 160,
437
+ 224,
438
+ 224
439
+ ],
440
+ [
441
+ 160,
442
+ 224,
443
+ 224
444
+ ],
445
+ [
446
+ 160,
447
+ 224,
448
+ 224
449
+ ],
450
+ [
451
+ 160,
452
+ 224,
453
+ 224
454
+ ],
455
+ [
456
+ 160,
457
+ 224,
458
+ 224
459
+ ],
460
+ [
461
+ 160,
462
+ 224,
463
+ 224
464
+ ],
465
+ [
466
+ 160,
467
+ 224,
468
+ 224
469
+ ],
470
+ [
471
+ 160,
472
+ 224,
473
+ 224
474
+ ],
475
+ [
476
+ 160,
477
+ 224,
478
+ 224
479
+ ],
480
+ [
481
+ 160,
482
+ 224,
483
+ 224
484
+ ],
485
+ [
486
+ 160,
487
+ 224,
488
+ 224
489
+ ],
490
+ [
491
+ 160,
492
+ 224,
493
+ 224
494
+ ],
495
+ [
496
+ 160,
497
+ 224,
498
+ 224
499
+ ],
500
+ [
501
+ 160,
502
+ 224,
503
+ 224
504
+ ],
505
+ [
506
+ 160,
507
+ 224,
508
+ 224
509
+ ],
510
+ [
511
+ 160,
512
+ 224,
513
+ 224
514
+ ],
515
+ [
516
+ 160,
517
+ 224,
518
+ 224
519
+ ],
520
+ [
521
+ 160,
522
+ 224,
523
+ 224
524
+ ],
525
+ [
526
+ 160,
527
+ 224,
528
+ 224
529
+ ],
530
+ [
531
+ 160,
532
+ 224,
533
+ 224
534
+ ],
535
+ [
536
+ 160,
537
+ 224,
538
+ 224
539
+ ],
540
+ [
541
+ 160,
542
+ 224,
543
+ 224
544
+ ],
545
+ [
546
+ 160,
547
+ 224,
548
+ 224
549
+ ],
550
+ [
551
+ 160,
552
+ 224,
553
+ 224
554
+ ],
555
+ [
556
+ 160,
557
+ 224,
558
+ 224
559
+ ],
560
+ [
561
+ 160,
562
+ 224,
563
+ 224
564
+ ],
565
+ [
566
+ 160,
567
+ 224,
568
+ 224
569
+ ],
570
+ [
571
+ 160,
572
+ 224,
573
+ 224
574
+ ],
575
+ [
576
+ 160,
577
+ 224,
578
+ 224
579
+ ],
580
+ [
581
+ 160,
582
+ 224,
583
+ 224
584
+ ],
585
+ [
586
+ 160,
587
+ 224,
588
+ 224
589
+ ],
590
+ [
591
+ 160,
592
+ 224,
593
+ 224
594
+ ],
595
+ [
596
+ 160,
597
+ 224,
598
+ 224
599
+ ],
600
+ [
601
+ 160,
602
+ 224,
603
+ 224
604
+ ],
605
+ [
606
+ 160,
607
+ 224,
608
+ 224
609
+ ],
610
+ [
611
+ 160,
612
+ 224,
613
+ 224
614
+ ],
615
+ [
616
+ 160,
617
+ 224,
618
+ 224
619
+ ],
620
+ [
621
+ 160,
622
+ 224,
623
+ 224
624
+ ],
625
+ [
626
+ 160,
627
+ 224,
628
+ 224
629
+ ],
630
+ [
631
+ 160,
632
+ 224,
633
+ 224
634
+ ],
635
+ [
636
+ 160,
637
+ 224,
638
+ 224
639
+ ],
640
+ [
641
+ 160,
642
+ 224,
643
+ 224
644
+ ],
645
+ [
646
+ 160,
647
+ 224,
648
+ 224
649
+ ],
650
+ [
651
+ 160,
652
+ 224,
653
+ 224
654
+ ],
655
+ [
656
+ 160,
657
+ 224,
658
+ 224
659
+ ],
660
+ [
661
+ 160,
662
+ 224,
663
+ 224
664
+ ],
665
+ [
666
+ 160,
667
+ 224,
668
+ 224
669
+ ],
670
+ [
671
+ 160,
672
+ 224,
673
+ 224
674
+ ],
675
+ [
676
+ 160,
677
+ 224,
678
+ 224
679
+ ],
680
+ [
681
+ 160,
682
+ 224,
683
+ 224
684
+ ],
685
+ [
686
+ 160,
687
+ 224,
688
+ 224
689
+ ],
690
+ [
691
+ 160,
692
+ 224,
693
+ 224
694
+ ],
695
+ [
696
+ 160,
697
+ 224,
698
+ 224
699
+ ],
700
+ [
701
+ 160,
702
+ 224,
703
+ 224
704
+ ],
705
+ [
706
+ 160,
707
+ 224,
708
+ 224
709
+ ],
710
+ [
711
+ 160,
712
+ 224,
713
+ 224
714
+ ],
715
+ [
716
+ 160,
717
+ 224,
718
+ 224
719
+ ],
720
+ [
721
+ 160,
722
+ 224,
723
+ 224
724
+ ],
725
+ [
726
+ 160,
727
+ 224,
728
+ 224
729
+ ],
730
+ [
731
+ 160,
732
+ 224,
733
+ 224
734
+ ],
735
+ [
736
+ 160,
737
+ 224,
738
+ 224
739
+ ],
740
+ [
741
+ 160,
742
+ 224,
743
+ 224
744
+ ],
745
+ [
746
+ 160,
747
+ 224,
748
+ 224
749
+ ],
750
+ [
751
+ 160,
752
+ 224,
753
+ 224
754
+ ],
755
+ [
756
+ 160,
757
+ 224,
758
+ 224
759
+ ],
760
+ [
761
+ 160,
762
+ 224,
763
+ 224
764
+ ],
765
+ [
766
+ 160,
767
+ 224,
768
+ 224
769
+ ],
770
+ [
771
+ 160,
772
+ 224,
773
+ 224
774
+ ],
775
+ [
776
+ 160,
777
+ 224,
778
+ 224
779
+ ],
780
+ [
781
+ 160,
782
+ 224,
783
+ 224
784
+ ],
785
+ [
786
+ 160,
787
+ 224,
788
+ 224
789
+ ],
790
+ [
791
+ 160,
792
+ 224,
793
+ 224
794
+ ],
795
+ [
796
+ 160,
797
+ 224,
798
+ 224
799
+ ],
800
+ [
801
+ 160,
802
+ 224,
803
+ 224
804
+ ],
805
+ [
806
+ 160,
807
+ 224,
808
+ 224
809
+ ],
810
+ [
811
+ 160,
812
+ 224,
813
+ 224
814
+ ],
815
+ [
816
+ 160,
817
+ 224,
818
+ 224
819
+ ],
820
+ [
821
+ 160,
822
+ 224,
823
+ 224
824
+ ],
825
+ [
826
+ 160,
827
+ 224,
828
+ 224
829
+ ],
830
+ [
831
+ 160,
832
+ 224,
833
+ 224
834
+ ],
835
+ [
836
+ 160,
837
+ 224,
838
+ 224
839
+ ],
840
+ [
841
+ 160,
842
+ 224,
843
+ 224
844
+ ],
845
+ [
846
+ 160,
847
+ 224,
848
+ 224
849
+ ],
850
+ [
851
+ 160,
852
+ 224,
853
+ 224
854
+ ],
855
+ [
856
+ 160,
857
+ 224,
858
+ 224
859
+ ],
860
+ [
861
+ 160,
862
+ 224,
863
+ 224
864
+ ],
865
+ [
866
+ 160,
867
+ 224,
868
+ 224
869
+ ],
870
+ [
871
+ 160,
872
+ 224,
873
+ 224
874
+ ],
875
+ [
876
+ 160,
877
+ 224,
878
+ 224
879
+ ],
880
+ [
881
+ 160,
882
+ 224,
883
+ 224
884
+ ],
885
+ [
886
+ 160,
887
+ 224,
888
+ 224
889
+ ],
890
+ [
891
+ 160,
892
+ 224,
893
+ 224
894
+ ],
895
+ [
896
+ 160,
897
+ 224,
898
+ 224
899
+ ],
900
+ [
901
+ 160,
902
+ 224,
903
+ 224
904
+ ],
905
+ [
906
+ 160,
907
+ 224,
908
+ 224
909
+ ],
910
+ [
911
+ 160,
912
+ 224,
913
+ 224
914
+ ],
915
+ [
916
+ 160,
917
+ 224,
918
+ 224
919
+ ],
920
+ [
921
+ 160,
922
+ 224,
923
+ 224
924
+ ],
925
+ [
926
+ 160,
927
+ 224,
928
+ 224
929
+ ],
930
+ [
931
+ 160,
932
+ 224,
933
+ 224
934
+ ],
935
+ [
936
+ 160,
937
+ 224,
938
+ 224
939
+ ],
940
+ [
941
+ 160,
942
+ 224,
943
+ 224
944
+ ],
945
+ [
946
+ 160,
947
+ 224,
948
+ 224
949
+ ],
950
+ [
951
+ 160,
952
+ 224,
953
+ 224
954
+ ],
955
+ [
956
+ 160,
957
+ 224,
958
+ 224
959
+ ],
960
+ [
961
+ 160,
962
+ 224,
963
+ 224
964
+ ],
965
+ [
966
+ 160,
967
+ 224,
968
+ 224
969
+ ],
970
+ [
971
+ 160,
972
+ 224,
973
+ 224
974
+ ],
975
+ [
976
+ 160,
977
+ 223,
978
+ 223
979
+ ],
980
+ [
981
+ 160,
982
+ 224,
983
+ 224
984
+ ],
985
+ [
986
+ 160,
987
+ 224,
988
+ 224
989
+ ],
990
+ [
991
+ 160,
992
+ 224,
993
+ 224
994
+ ],
995
+ [
996
+ 160,
997
+ 224,
998
+ 224
999
+ ],
1000
+ [
1001
+ 160,
1002
+ 224,
1003
+ 224
1004
+ ],
1005
+ [
1006
+ 160,
1007
+ 224,
1008
+ 224
1009
+ ],
1010
+ [
1011
+ 160,
1012
+ 224,
1013
+ 224
1014
+ ],
1015
+ [
1016
+ 160,
1017
+ 224,
1018
+ 224
1019
+ ],
1020
+ [
1021
+ 160,
1022
+ 224,
1023
+ 224
1024
+ ],
1025
+ [
1026
+ 160,
1027
+ 224,
1028
+ 224
1029
+ ],
1030
+ [
1031
+ 160,
1032
+ 224,
1033
+ 224
1034
+ ],
1035
+ [
1036
+ 160,
1037
+ 224,
1038
+ 224
1039
+ ],
1040
+ [
1041
+ 160,
1042
+ 224,
1043
+ 224
1044
+ ],
1045
+ [
1046
+ 160,
1047
+ 224,
1048
+ 224
1049
+ ],
1050
+ [
1051
+ 160,
1052
+ 224,
1053
+ 224
1054
+ ],
1055
+ [
1056
+ 160,
1057
+ 224,
1058
+ 224
1059
+ ],
1060
+ [
1061
+ 160,
1062
+ 224,
1063
+ 224
1064
+ ],
1065
+ [
1066
+ 160,
1067
+ 224,
1068
+ 224
1069
+ ],
1070
+ [
1071
+ 160,
1072
+ 224,
1073
+ 224
1074
+ ],
1075
+ [
1076
+ 160,
1077
+ 224,
1078
+ 224
1079
+ ],
1080
+ [
1081
+ 160,
1082
+ 224,
1083
+ 224
1084
+ ],
1085
+ [
1086
+ 160,
1087
+ 224,
1088
+ 224
1089
+ ],
1090
+ [
1091
+ 160,
1092
+ 224,
1093
+ 224
1094
+ ],
1095
+ [
1096
+ 160,
1097
+ 224,
1098
+ 224
1099
+ ],
1100
+ [
1101
+ 160,
1102
+ 224,
1103
+ 224
1104
+ ],
1105
+ [
1106
+ 160,
1107
+ 224,
1108
+ 224
1109
+ ],
1110
+ [
1111
+ 160,
1112
+ 224,
1113
+ 224
1114
+ ],
1115
+ [
1116
+ 160,
1117
+ 224,
1118
+ 224
1119
+ ],
1120
+ [
1121
+ 160,
1122
+ 224,
1123
+ 224
1124
+ ],
1125
+ [
1126
+ 160,
1127
+ 224,
1128
+ 224
1129
+ ],
1130
+ [
1131
+ 160,
1132
+ 224,
1133
+ 224
1134
+ ],
1135
+ [
1136
+ 160,
1137
+ 224,
1138
+ 224
1139
+ ],
1140
+ [
1141
+ 160,
1142
+ 224,
1143
+ 224
1144
+ ],
1145
+ [
1146
+ 160,
1147
+ 224,
1148
+ 224
1149
+ ],
1150
+ [
1151
+ 160,
1152
+ 224,
1153
+ 224
1154
+ ],
1155
+ [
1156
+ 160,
1157
+ 224,
1158
+ 224
1159
+ ],
1160
+ [
1161
+ 160,
1162
+ 224,
1163
+ 224
1164
+ ],
1165
+ [
1166
+ 160,
1167
+ 224,
1168
+ 224
1169
+ ],
1170
+ [
1171
+ 160,
1172
+ 224,
1173
+ 224
1174
+ ],
1175
+ [
1176
+ 160,
1177
+ 224,
1178
+ 224
1179
+ ],
1180
+ [
1181
+ 160,
1182
+ 224,
1183
+ 224
1184
+ ],
1185
+ [
1186
+ 160,
1187
+ 224,
1188
+ 224
1189
+ ],
1190
+ [
1191
+ 160,
1192
+ 224,
1193
+ 224
1194
+ ],
1195
+ [
1196
+ 160,
1197
+ 224,
1198
+ 224
1199
+ ],
1200
+ [
1201
+ 160,
1202
+ 224,
1203
+ 224
1204
+ ],
1205
+ [
1206
+ 160,
1207
+ 224,
1208
+ 224
1209
+ ],
1210
+ [
1211
+ 160,
1212
+ 224,
1213
+ 224
1214
+ ],
1215
+ [
1216
+ 160,
1217
+ 224,
1218
+ 224
1219
+ ],
1220
+ [
1221
+ 160,
1222
+ 224,
1223
+ 224
1224
+ ],
1225
+ [
1226
+ 160,
1227
+ 224,
1228
+ 224
1229
+ ],
1230
+ [
1231
+ 160,
1232
+ 224,
1233
+ 224
1234
+ ],
1235
+ [
1236
+ 160,
1237
+ 224,
1238
+ 224
1239
+ ],
1240
+ [
1241
+ 160,
1242
+ 224,
1243
+ 224
1244
+ ],
1245
+ [
1246
+ 160,
1247
+ 224,
1248
+ 224
1249
+ ],
1250
+ [
1251
+ 160,
1252
+ 224,
1253
+ 224
1254
+ ],
1255
+ [
1256
+ 160,
1257
+ 224,
1258
+ 224
1259
+ ],
1260
+ [
1261
+ 160,
1262
+ 224,
1263
+ 224
1264
+ ],
1265
+ [
1266
+ 160,
1267
+ 224,
1268
+ 224
1269
+ ],
1270
+ [
1271
+ 160,
1272
+ 224,
1273
+ 224
1274
+ ],
1275
+ [
1276
+ 160,
1277
+ 224,
1278
+ 224
1279
+ ],
1280
+ [
1281
+ 160,
1282
+ 224,
1283
+ 224
1284
+ ],
1285
+ [
1286
+ 160,
1287
+ 224,
1288
+ 224
1289
+ ],
1290
+ [
1291
+ 160,
1292
+ 224,
1293
+ 224
1294
+ ],
1295
+ [
1296
+ 160,
1297
+ 224,
1298
+ 224
1299
+ ],
1300
+ [
1301
+ 160,
1302
+ 224,
1303
+ 224
1304
+ ],
1305
+ [
1306
+ 160,
1307
+ 224,
1308
+ 224
1309
+ ],
1310
+ [
1311
+ 160,
1312
+ 224,
1313
+ 224
1314
+ ],
1315
+ [
1316
+ 160,
1317
+ 224,
1318
+ 224
1319
+ ],
1320
+ [
1321
+ 160,
1322
+ 224,
1323
+ 224
1324
+ ],
1325
+ [
1326
+ 160,
1327
+ 224,
1328
+ 224
1329
+ ],
1330
+ [
1331
+ 160,
1332
+ 224,
1333
+ 224
1334
+ ],
1335
+ [
1336
+ 160,
1337
+ 224,
1338
+ 224
1339
+ ],
1340
+ [
1341
+ 160,
1342
+ 224,
1343
+ 224
1344
+ ],
1345
+ [
1346
+ 160,
1347
+ 224,
1348
+ 224
1349
+ ],
1350
+ [
1351
+ 160,
1352
+ 224,
1353
+ 224
1354
+ ],
1355
+ [
1356
+ 160,
1357
+ 224,
1358
+ 224
1359
+ ],
1360
+ [
1361
+ 160,
1362
+ 224,
1363
+ 224
1364
+ ],
1365
+ [
1366
+ 160,
1367
+ 224,
1368
+ 224
1369
+ ],
1370
+ [
1371
+ 160,
1372
+ 224,
1373
+ 224
1374
+ ],
1375
+ [
1376
+ 160,
1377
+ 224,
1378
+ 224
1379
+ ],
1380
+ [
1381
+ 160,
1382
+ 224,
1383
+ 224
1384
+ ],
1385
+ [
1386
+ 160,
1387
+ 224,
1388
+ 224
1389
+ ],
1390
+ [
1391
+ 160,
1392
+ 224,
1393
+ 224
1394
+ ],
1395
+ [
1396
+ 160,
1397
+ 224,
1398
+ 224
1399
+ ],
1400
+ [
1401
+ 160,
1402
+ 224,
1403
+ 224
1404
+ ],
1405
+ [
1406
+ 160,
1407
+ 224,
1408
+ 224
1409
+ ],
1410
+ [
1411
+ 160,
1412
+ 224,
1413
+ 224
1414
+ ],
1415
+ [
1416
+ 160,
1417
+ 224,
1418
+ 224
1419
+ ],
1420
+ [
1421
+ 160,
1422
+ 224,
1423
+ 224
1424
+ ],
1425
+ [
1426
+ 160,
1427
+ 224,
1428
+ 224
1429
+ ],
1430
+ [
1431
+ 160,
1432
+ 224,
1433
+ 224
1434
+ ],
1435
+ [
1436
+ 160,
1437
+ 224,
1438
+ 224
1439
+ ],
1440
+ [
1441
+ 160,
1442
+ 224,
1443
+ 224
1444
+ ],
1445
+ [
1446
+ 160,
1447
+ 224,
1448
+ 224
1449
+ ],
1450
+ [
1451
+ 160,
1452
+ 224,
1453
+ 224
1454
+ ],
1455
+ [
1456
+ 160,
1457
+ 224,
1458
+ 224
1459
+ ],
1460
+ [
1461
+ 160,
1462
+ 224,
1463
+ 224
1464
+ ],
1465
+ [
1466
+ 160,
1467
+ 224,
1468
+ 224
1469
+ ],
1470
+ [
1471
+ 160,
1472
+ 224,
1473
+ 224
1474
+ ],
1475
+ [
1476
+ 160,
1477
+ 224,
1478
+ 224
1479
+ ],
1480
+ [
1481
+ 160,
1482
+ 224,
1483
+ 224
1484
+ ],
1485
+ [
1486
+ 160,
1487
+ 224,
1488
+ 224
1489
+ ],
1490
+ [
1491
+ 160,
1492
+ 224,
1493
+ 224
1494
+ ],
1495
+ [
1496
+ 160,
1497
+ 224,
1498
+ 224
1499
+ ],
1500
+ [
1501
+ 160,
1502
+ 224,
1503
+ 224
1504
+ ],
1505
+ [
1506
+ 160,
1507
+ 224,
1508
+ 224
1509
+ ],
1510
+ [
1511
+ 160,
1512
+ 224,
1513
+ 224
1514
+ ],
1515
+ [
1516
+ 160,
1517
+ 224,
1518
+ 224
1519
+ ],
1520
+ [
1521
+ 160,
1522
+ 224,
1523
+ 224
1524
+ ],
1525
+ [
1526
+ 160,
1527
+ 224,
1528
+ 224
1529
+ ],
1530
+ [
1531
+ 160,
1532
+ 224,
1533
+ 224
1534
+ ],
1535
+ [
1536
+ 160,
1537
+ 224,
1538
+ 224
1539
+ ],
1540
+ [
1541
+ 160,
1542
+ 224,
1543
+ 224
1544
+ ],
1545
+ [
1546
+ 160,
1547
+ 224,
1548
+ 224
1549
+ ],
1550
+ [
1551
+ 160,
1552
+ 224,
1553
+ 224
1554
+ ],
1555
+ [
1556
+ 160,
1557
+ 224,
1558
+ 224
1559
+ ],
1560
+ [
1561
+ 160,
1562
+ 224,
1563
+ 224
1564
+ ],
1565
+ [
1566
+ 160,
1567
+ 224,
1568
+ 224
1569
+ ],
1570
+ [
1571
+ 160,
1572
+ 224,
1573
+ 224
1574
+ ],
1575
+ [
1576
+ 160,
1577
+ 224,
1578
+ 224
1579
+ ],
1580
+ [
1581
+ 160,
1582
+ 224,
1583
+ 224
1584
+ ],
1585
+ [
1586
+ 160,
1587
+ 224,
1588
+ 224
1589
+ ],
1590
+ [
1591
+ 160,
1592
+ 224,
1593
+ 224
1594
+ ],
1595
+ [
1596
+ 160,
1597
+ 224,
1598
+ 224
1599
+ ],
1600
+ [
1601
+ 160,
1602
+ 224,
1603
+ 224
1604
+ ],
1605
+ [
1606
+ 160,
1607
+ 224,
1608
+ 224
1609
+ ],
1610
+ [
1611
+ 160,
1612
+ 224,
1613
+ 224
1614
+ ],
1615
+ [
1616
+ 160,
1617
+ 224,
1618
+ 224
1619
+ ],
1620
+ [
1621
+ 160,
1622
+ 224,
1623
+ 224
1624
+ ],
1625
+ [
1626
+ 160,
1627
+ 224,
1628
+ 224
1629
+ ],
1630
+ [
1631
+ 160,
1632
+ 224,
1633
+ 224
1634
+ ],
1635
+ [
1636
+ 160,
1637
+ 224,
1638
+ 224
1639
+ ],
1640
+ [
1641
+ 160,
1642
+ 224,
1643
+ 224
1644
+ ],
1645
+ [
1646
+ 160,
1647
+ 224,
1648
+ 224
1649
+ ],
1650
+ [
1651
+ 160,
1652
+ 224,
1653
+ 224
1654
+ ],
1655
+ [
1656
+ 160,
1657
+ 224,
1658
+ 224
1659
+ ],
1660
+ [
1661
+ 160,
1662
+ 224,
1663
+ 224
1664
+ ],
1665
+ [
1666
+ 160,
1667
+ 224,
1668
+ 224
1669
+ ],
1670
+ [
1671
+ 160,
1672
+ 224,
1673
+ 224
1674
+ ],
1675
+ [
1676
+ 160,
1677
+ 224,
1678
+ 224
1679
+ ],
1680
+ [
1681
+ 160,
1682
+ 224,
1683
+ 224
1684
+ ],
1685
+ [
1686
+ 160,
1687
+ 224,
1688
+ 224
1689
+ ],
1690
+ [
1691
+ 160,
1692
+ 224,
1693
+ 224
1694
+ ],
1695
+ [
1696
+ 160,
1697
+ 224,
1698
+ 224
1699
+ ],
1700
+ [
1701
+ 160,
1702
+ 224,
1703
+ 224
1704
+ ],
1705
+ [
1706
+ 160,
1707
+ 224,
1708
+ 224
1709
+ ],
1710
+ [
1711
+ 160,
1712
+ 224,
1713
+ 224
1714
+ ],
1715
+ [
1716
+ 160,
1717
+ 224,
1718
+ 224
1719
+ ],
1720
+ [
1721
+ 160,
1722
+ 224,
1723
+ 224
1724
+ ],
1725
+ [
1726
+ 160,
1727
+ 224,
1728
+ 224
1729
+ ],
1730
+ [
1731
+ 160,
1732
+ 224,
1733
+ 224
1734
+ ],
1735
+ [
1736
+ 160,
1737
+ 224,
1738
+ 224
1739
+ ],
1740
+ [
1741
+ 160,
1742
+ 224,
1743
+ 224
1744
+ ],
1745
+ [
1746
+ 160,
1747
+ 224,
1748
+ 224
1749
+ ],
1750
+ [
1751
+ 160,
1752
+ 224,
1753
+ 224
1754
+ ],
1755
+ [
1756
+ 160,
1757
+ 224,
1758
+ 224
1759
+ ],
1760
+ [
1761
+ 160,
1762
+ 224,
1763
+ 224
1764
+ ],
1765
+ [
1766
+ 160,
1767
+ 224,
1768
+ 224
1769
+ ],
1770
+ [
1771
+ 160,
1772
+ 224,
1773
+ 224
1774
+ ],
1775
+ [
1776
+ 160,
1777
+ 224,
1778
+ 224
1779
+ ],
1780
+ [
1781
+ 160,
1782
+ 224,
1783
+ 224
1784
+ ],
1785
+ [
1786
+ 160,
1787
+ 224,
1788
+ 224
1789
+ ],
1790
+ [
1791
+ 160,
1792
+ 224,
1793
+ 224
1794
+ ],
1795
+ [
1796
+ 160,
1797
+ 224,
1798
+ 224
1799
+ ],
1800
+ [
1801
+ 160,
1802
+ 224,
1803
+ 224
1804
+ ],
1805
+ [
1806
+ 160,
1807
+ 224,
1808
+ 224
1809
+ ],
1810
+ [
1811
+ 160,
1812
+ 224,
1813
+ 224
1814
+ ],
1815
+ [
1816
+ 160,
1817
+ 224,
1818
+ 224
1819
+ ],
1820
+ [
1821
+ 160,
1822
+ 224,
1823
+ 224
1824
+ ],
1825
+ [
1826
+ 160,
1827
+ 224,
1828
+ 224
1829
+ ],
1830
+ [
1831
+ 160,
1832
+ 224,
1833
+ 224
1834
+ ],
1835
+ [
1836
+ 160,
1837
+ 224,
1838
+ 224
1839
+ ],
1840
+ [
1841
+ 160,
1842
+ 224,
1843
+ 224
1844
+ ],
1845
+ [
1846
+ 160,
1847
+ 224,
1848
+ 224
1849
+ ]
1850
+ ],
1851
+ "spacings": [
1852
+ [
1853
+ 3.0,
1854
+ 1.5,
1855
+ 1.5
1856
+ ],
1857
+ [
1858
+ 3.0,
1859
+ 1.5,
1860
+ 1.5
1861
+ ],
1862
+ [
1863
+ 3.0,
1864
+ 1.5,
1865
+ 1.5
1866
+ ],
1867
+ [
1868
+ 3.0,
1869
+ 1.5,
1870
+ 1.5
1871
+ ],
1872
+ [
1873
+ 3.0,
1874
+ 1.5,
1875
+ 1.5
1876
+ ],
1877
+ [
1878
+ 3.0,
1879
+ 1.5,
1880
+ 1.5
1881
+ ],
1882
+ [
1883
+ 3.0,
1884
+ 1.5,
1885
+ 1.5
1886
+ ],
1887
+ [
1888
+ 3.0,
1889
+ 1.5,
1890
+ 1.5
1891
+ ],
1892
+ [
1893
+ 3.0,
1894
+ 1.5,
1895
+ 1.5
1896
+ ],
1897
+ [
1898
+ 3.0,
1899
+ 1.5,
1900
+ 1.5
1901
+ ],
1902
+ [
1903
+ 3.0,
1904
+ 1.5,
1905
+ 1.5
1906
+ ],
1907
+ [
1908
+ 3.0,
1909
+ 1.5,
1910
+ 1.5
1911
+ ],
1912
+ [
1913
+ 3.0,
1914
+ 1.5,
1915
+ 1.5
1916
+ ],
1917
+ [
1918
+ 3.0,
1919
+ 1.5,
1920
+ 1.5
1921
+ ],
1922
+ [
1923
+ 3.0,
1924
+ 1.5,
1925
+ 1.5
1926
+ ],
1927
+ [
1928
+ 3.0,
1929
+ 1.5,
1930
+ 1.5
1931
+ ],
1932
+ [
1933
+ 3.0,
1934
+ 1.5,
1935
+ 1.5
1936
+ ],
1937
+ [
1938
+ 3.0,
1939
+ 1.5,
1940
+ 1.5
1941
+ ],
1942
+ [
1943
+ 3.0,
1944
+ 1.5,
1945
+ 1.5
1946
+ ],
1947
+ [
1948
+ 3.0,
1949
+ 1.5,
1950
+ 1.5
1951
+ ],
1952
+ [
1953
+ 3.0,
1954
+ 1.5,
1955
+ 1.5
1956
+ ],
1957
+ [
1958
+ 3.0,
1959
+ 1.5,
1960
+ 1.5
1961
+ ],
1962
+ [
1963
+ 3.0,
1964
+ 1.5,
1965
+ 1.5
1966
+ ],
1967
+ [
1968
+ 3.0,
1969
+ 1.5,
1970
+ 1.5
1971
+ ],
1972
+ [
1973
+ 3.0,
1974
+ 1.5,
1975
+ 1.5
1976
+ ],
1977
+ [
1978
+ 3.0,
1979
+ 1.5,
1980
+ 1.5
1981
+ ],
1982
+ [
1983
+ 3.0,
1984
+ 1.5,
1985
+ 1.5
1986
+ ],
1987
+ [
1988
+ 3.0,
1989
+ 1.5,
1990
+ 1.5
1991
+ ],
1992
+ [
1993
+ 3.0,
1994
+ 1.5,
1995
+ 1.5
1996
+ ],
1997
+ [
1998
+ 3.0,
1999
+ 1.5,
2000
+ 1.5
2001
+ ],
2002
+ [
2003
+ 3.0,
2004
+ 1.5,
2005
+ 1.5
2006
+ ],
2007
+ [
2008
+ 3.0,
2009
+ 1.5,
2010
+ 1.5
2011
+ ],
2012
+ [
2013
+ 3.0,
2014
+ 1.5,
2015
+ 1.5
2016
+ ],
2017
+ [
2018
+ 3.0,
2019
+ 1.5,
2020
+ 1.5
2021
+ ],
2022
+ [
2023
+ 3.0,
2024
+ 1.5,
2025
+ 1.5
2026
+ ],
2027
+ [
2028
+ 3.0,
2029
+ 1.5,
2030
+ 1.5
2031
+ ],
2032
+ [
2033
+ 3.0,
2034
+ 1.5,
2035
+ 1.5
2036
+ ],
2037
+ [
2038
+ 3.0,
2039
+ 1.5,
2040
+ 1.5
2041
+ ],
2042
+ [
2043
+ 3.0,
2044
+ 1.5,
2045
+ 1.5
2046
+ ],
2047
+ [
2048
+ 3.0,
2049
+ 1.5,
2050
+ 1.5
2051
+ ],
2052
+ [
2053
+ 3.0,
2054
+ 1.5,
2055
+ 1.5
2056
+ ],
2057
+ [
2058
+ 3.0,
2059
+ 1.5,
2060
+ 1.5
2061
+ ],
2062
+ [
2063
+ 3.0,
2064
+ 1.5,
2065
+ 1.5
2066
+ ],
2067
+ [
2068
+ 3.0,
2069
+ 1.5,
2070
+ 1.5
2071
+ ],
2072
+ [
2073
+ 3.0,
2074
+ 1.5,
2075
+ 1.5
2076
+ ],
2077
+ [
2078
+ 3.0,
2079
+ 1.5,
2080
+ 1.5
2081
+ ],
2082
+ [
2083
+ 3.0,
2084
+ 1.5,
2085
+ 1.5
2086
+ ],
2087
+ [
2088
+ 3.0,
2089
+ 1.5,
2090
+ 1.5
2091
+ ],
2092
+ [
2093
+ 3.0,
2094
+ 1.5,
2095
+ 1.5
2096
+ ],
2097
+ [
2098
+ 3.0,
2099
+ 1.5,
2100
+ 1.5
2101
+ ],
2102
+ [
2103
+ 3.0,
2104
+ 1.5,
2105
+ 1.5
2106
+ ],
2107
+ [
2108
+ 3.0,
2109
+ 1.5,
2110
+ 1.5
2111
+ ],
2112
+ [
2113
+ 3.0,
2114
+ 1.5,
2115
+ 1.5
2116
+ ],
2117
+ [
2118
+ 3.0,
2119
+ 1.5,
2120
+ 1.5
2121
+ ],
2122
+ [
2123
+ 3.0,
2124
+ 1.5,
2125
+ 1.5
2126
+ ],
2127
+ [
2128
+ 3.0,
2129
+ 1.5,
2130
+ 1.5
2131
+ ],
2132
+ [
2133
+ 3.0,
2134
+ 1.5,
2135
+ 1.5
2136
+ ],
2137
+ [
2138
+ 3.0,
2139
+ 1.5,
2140
+ 1.5
2141
+ ],
2142
+ [
2143
+ 3.0,
2144
+ 1.5,
2145
+ 1.5
2146
+ ],
2147
+ [
2148
+ 3.0,
2149
+ 1.5,
2150
+ 1.5
2151
+ ],
2152
+ [
2153
+ 3.0,
2154
+ 1.5,
2155
+ 1.5
2156
+ ],
2157
+ [
2158
+ 3.0,
2159
+ 1.5,
2160
+ 1.5
2161
+ ],
2162
+ [
2163
+ 3.0,
2164
+ 1.5,
2165
+ 1.5
2166
+ ],
2167
+ [
2168
+ 3.0,
2169
+ 1.5,
2170
+ 1.5
2171
+ ],
2172
+ [
2173
+ 3.0,
2174
+ 1.5,
2175
+ 1.5
2176
+ ],
2177
+ [
2178
+ 3.0,
2179
+ 1.5,
2180
+ 1.5
2181
+ ],
2182
+ [
2183
+ 3.0,
2184
+ 1.5,
2185
+ 1.5
2186
+ ],
2187
+ [
2188
+ 3.0,
2189
+ 1.5,
2190
+ 1.5
2191
+ ],
2192
+ [
2193
+ 3.0,
2194
+ 1.5,
2195
+ 1.5
2196
+ ],
2197
+ [
2198
+ 3.0,
2199
+ 1.5,
2200
+ 1.5
2201
+ ],
2202
+ [
2203
+ 3.0,
2204
+ 1.5,
2205
+ 1.5
2206
+ ],
2207
+ [
2208
+ 3.0,
2209
+ 1.5,
2210
+ 1.5
2211
+ ],
2212
+ [
2213
+ 3.0,
2214
+ 1.5,
2215
+ 1.5
2216
+ ],
2217
+ [
2218
+ 3.0,
2219
+ 1.5,
2220
+ 1.5
2221
+ ],
2222
+ [
2223
+ 3.0,
2224
+ 1.5,
2225
+ 1.5
2226
+ ],
2227
+ [
2228
+ 3.0,
2229
+ 1.5,
2230
+ 1.5
2231
+ ],
2232
+ [
2233
+ 3.0,
2234
+ 1.5,
2235
+ 1.5
2236
+ ],
2237
+ [
2238
+ 3.0,
2239
+ 1.5,
2240
+ 1.5
2241
+ ],
2242
+ [
2243
+ 3.0,
2244
+ 1.5,
2245
+ 1.5
2246
+ ],
2247
+ [
2248
+ 3.0,
2249
+ 1.5,
2250
+ 1.5
2251
+ ],
2252
+ [
2253
+ 3.0,
2254
+ 1.5,
2255
+ 1.5
2256
+ ],
2257
+ [
2258
+ 3.0,
2259
+ 1.5,
2260
+ 1.5
2261
+ ],
2262
+ [
2263
+ 3.0,
2264
+ 1.5,
2265
+ 1.5
2266
+ ],
2267
+ [
2268
+ 3.0,
2269
+ 1.5,
2270
+ 1.5
2271
+ ],
2272
+ [
2273
+ 3.0,
2274
+ 1.5,
2275
+ 1.5
2276
+ ],
2277
+ [
2278
+ 3.0,
2279
+ 1.5,
2280
+ 1.5
2281
+ ],
2282
+ [
2283
+ 3.0,
2284
+ 1.5,
2285
+ 1.5
2286
+ ],
2287
+ [
2288
+ 3.0,
2289
+ 1.5,
2290
+ 1.5
2291
+ ],
2292
+ [
2293
+ 3.0,
2294
+ 1.5,
2295
+ 1.5
2296
+ ],
2297
+ [
2298
+ 3.0,
2299
+ 1.5,
2300
+ 1.5
2301
+ ],
2302
+ [
2303
+ 3.0,
2304
+ 1.5,
2305
+ 1.5
2306
+ ],
2307
+ [
2308
+ 3.0,
2309
+ 1.5,
2310
+ 1.5
2311
+ ],
2312
+ [
2313
+ 3.0,
2314
+ 1.5,
2315
+ 1.5
2316
+ ],
2317
+ [
2318
+ 3.0,
2319
+ 1.5,
2320
+ 1.5
2321
+ ],
2322
+ [
2323
+ 3.0,
2324
+ 1.5,
2325
+ 1.5
2326
+ ],
2327
+ [
2328
+ 3.0,
2329
+ 1.5,
2330
+ 1.5
2331
+ ],
2332
+ [
2333
+ 3.0,
2334
+ 1.5,
2335
+ 1.5
2336
+ ],
2337
+ [
2338
+ 3.0,
2339
+ 1.5,
2340
+ 1.5
2341
+ ],
2342
+ [
2343
+ 3.0,
2344
+ 1.5,
2345
+ 1.5
2346
+ ],
2347
+ [
2348
+ 3.0,
2349
+ 1.5,
2350
+ 1.5
2351
+ ],
2352
+ [
2353
+ 3.0,
2354
+ 1.5,
2355
+ 1.5
2356
+ ],
2357
+ [
2358
+ 3.0,
2359
+ 1.5,
2360
+ 1.5
2361
+ ],
2362
+ [
2363
+ 3.0,
2364
+ 1.5,
2365
+ 1.5
2366
+ ],
2367
+ [
2368
+ 3.0,
2369
+ 1.5,
2370
+ 1.5
2371
+ ],
2372
+ [
2373
+ 3.0,
2374
+ 1.5,
2375
+ 1.5
2376
+ ],
2377
+ [
2378
+ 3.0,
2379
+ 1.5,
2380
+ 1.5
2381
+ ],
2382
+ [
2383
+ 3.0,
2384
+ 1.5,
2385
+ 1.5
2386
+ ],
2387
+ [
2388
+ 3.0,
2389
+ 1.5,
2390
+ 1.5
2391
+ ],
2392
+ [
2393
+ 3.0,
2394
+ 1.5,
2395
+ 1.5
2396
+ ],
2397
+ [
2398
+ 3.0,
2399
+ 1.5,
2400
+ 1.5
2401
+ ],
2402
+ [
2403
+ 3.0,
2404
+ 1.5,
2405
+ 1.5
2406
+ ],
2407
+ [
2408
+ 3.0,
2409
+ 1.5,
2410
+ 1.5
2411
+ ],
2412
+ [
2413
+ 3.0,
2414
+ 1.5,
2415
+ 1.5
2416
+ ],
2417
+ [
2418
+ 3.0,
2419
+ 1.5,
2420
+ 1.5
2421
+ ],
2422
+ [
2423
+ 3.0,
2424
+ 1.5,
2425
+ 1.5
2426
+ ],
2427
+ [
2428
+ 3.0,
2429
+ 1.5,
2430
+ 1.5
2431
+ ],
2432
+ [
2433
+ 3.0,
2434
+ 1.5,
2435
+ 1.5
2436
+ ],
2437
+ [
2438
+ 3.0,
2439
+ 1.5,
2440
+ 1.5
2441
+ ],
2442
+ [
2443
+ 3.0,
2444
+ 1.5,
2445
+ 1.5
2446
+ ],
2447
+ [
2448
+ 3.0,
2449
+ 1.5,
2450
+ 1.5
2451
+ ],
2452
+ [
2453
+ 3.0,
2454
+ 1.5,
2455
+ 1.5
2456
+ ],
2457
+ [
2458
+ 3.0,
2459
+ 1.5,
2460
+ 1.5
2461
+ ],
2462
+ [
2463
+ 3.0,
2464
+ 1.5,
2465
+ 1.5
2466
+ ],
2467
+ [
2468
+ 3.0,
2469
+ 1.5,
2470
+ 1.5
2471
+ ],
2472
+ [
2473
+ 3.0,
2474
+ 1.5,
2475
+ 1.5
2476
+ ],
2477
+ [
2478
+ 3.0,
2479
+ 1.5,
2480
+ 1.5
2481
+ ],
2482
+ [
2483
+ 3.0,
2484
+ 1.5,
2485
+ 1.5
2486
+ ],
2487
+ [
2488
+ 3.0,
2489
+ 1.5,
2490
+ 1.5
2491
+ ],
2492
+ [
2493
+ 3.0,
2494
+ 1.5,
2495
+ 1.5
2496
+ ],
2497
+ [
2498
+ 3.0,
2499
+ 1.5,
2500
+ 1.5
2501
+ ],
2502
+ [
2503
+ 3.0,
2504
+ 1.5,
2505
+ 1.5
2506
+ ],
2507
+ [
2508
+ 3.0,
2509
+ 1.5,
2510
+ 1.5
2511
+ ],
2512
+ [
2513
+ 3.0,
2514
+ 1.5,
2515
+ 1.5
2516
+ ],
2517
+ [
2518
+ 3.0,
2519
+ 1.5,
2520
+ 1.5
2521
+ ],
2522
+ [
2523
+ 3.0,
2524
+ 1.5,
2525
+ 1.5
2526
+ ],
2527
+ [
2528
+ 3.0,
2529
+ 1.5,
2530
+ 1.5
2531
+ ],
2532
+ [
2533
+ 3.0,
2534
+ 1.5,
2535
+ 1.5
2536
+ ],
2537
+ [
2538
+ 3.0,
2539
+ 1.5,
2540
+ 1.5
2541
+ ],
2542
+ [
2543
+ 3.0,
2544
+ 1.5,
2545
+ 1.5
2546
+ ],
2547
+ [
2548
+ 3.0,
2549
+ 1.5,
2550
+ 1.5
2551
+ ],
2552
+ [
2553
+ 3.0,
2554
+ 1.5,
2555
+ 1.5
2556
+ ],
2557
+ [
2558
+ 3.0,
2559
+ 1.5,
2560
+ 1.5
2561
+ ],
2562
+ [
2563
+ 3.0,
2564
+ 1.5,
2565
+ 1.5
2566
+ ],
2567
+ [
2568
+ 3.0,
2569
+ 1.5,
2570
+ 1.5
2571
+ ],
2572
+ [
2573
+ 3.0,
2574
+ 1.5,
2575
+ 1.5
2576
+ ],
2577
+ [
2578
+ 3.0,
2579
+ 1.5,
2580
+ 1.5
2581
+ ],
2582
+ [
2583
+ 3.0,
2584
+ 1.5,
2585
+ 1.5
2586
+ ],
2587
+ [
2588
+ 3.0,
2589
+ 1.5,
2590
+ 1.5
2591
+ ],
2592
+ [
2593
+ 3.0,
2594
+ 1.5,
2595
+ 1.5
2596
+ ],
2597
+ [
2598
+ 3.0,
2599
+ 1.5,
2600
+ 1.5
2601
+ ],
2602
+ [
2603
+ 3.0,
2604
+ 1.5,
2605
+ 1.5
2606
+ ],
2607
+ [
2608
+ 3.0,
2609
+ 1.5,
2610
+ 1.5
2611
+ ],
2612
+ [
2613
+ 3.0,
2614
+ 1.5,
2615
+ 1.5
2616
+ ],
2617
+ [
2618
+ 3.0,
2619
+ 1.5,
2620
+ 1.5
2621
+ ],
2622
+ [
2623
+ 3.0,
2624
+ 1.5,
2625
+ 1.5
2626
+ ],
2627
+ [
2628
+ 3.0,
2629
+ 1.5,
2630
+ 1.5
2631
+ ],
2632
+ [
2633
+ 3.0,
2634
+ 1.5,
2635
+ 1.5
2636
+ ],
2637
+ [
2638
+ 3.0,
2639
+ 1.5,
2640
+ 1.5
2641
+ ],
2642
+ [
2643
+ 3.0,
2644
+ 1.5,
2645
+ 1.5
2646
+ ],
2647
+ [
2648
+ 3.0,
2649
+ 1.5,
2650
+ 1.5
2651
+ ],
2652
+ [
2653
+ 3.0,
2654
+ 1.5,
2655
+ 1.5
2656
+ ],
2657
+ [
2658
+ 3.0,
2659
+ 1.5,
2660
+ 1.5
2661
+ ],
2662
+ [
2663
+ 3.0,
2664
+ 1.5,
2665
+ 1.5
2666
+ ],
2667
+ [
2668
+ 3.0,
2669
+ 1.5,
2670
+ 1.5
2671
+ ],
2672
+ [
2673
+ 3.0,
2674
+ 1.5,
2675
+ 1.5
2676
+ ],
2677
+ [
2678
+ 3.0,
2679
+ 1.5,
2680
+ 1.5
2681
+ ],
2682
+ [
2683
+ 3.0,
2684
+ 1.5,
2685
+ 1.5
2686
+ ],
2687
+ [
2688
+ 3.0,
2689
+ 1.5,
2690
+ 1.5
2691
+ ],
2692
+ [
2693
+ 3.0,
2694
+ 1.5,
2695
+ 1.5
2696
+ ],
2697
+ [
2698
+ 3.0,
2699
+ 1.5,
2700
+ 1.5
2701
+ ],
2702
+ [
2703
+ 3.0,
2704
+ 1.5,
2705
+ 1.5
2706
+ ],
2707
+ [
2708
+ 3.0,
2709
+ 1.5,
2710
+ 1.5
2711
+ ],
2712
+ [
2713
+ 3.0,
2714
+ 1.5,
2715
+ 1.5
2716
+ ],
2717
+ [
2718
+ 3.0,
2719
+ 1.5,
2720
+ 1.5
2721
+ ],
2722
+ [
2723
+ 3.0,
2724
+ 1.5,
2725
+ 1.5
2726
+ ],
2727
+ [
2728
+ 3.0,
2729
+ 1.5,
2730
+ 1.5
2731
+ ],
2732
+ [
2733
+ 3.0,
2734
+ 1.5,
2735
+ 1.5
2736
+ ],
2737
+ [
2738
+ 3.0,
2739
+ 1.5,
2740
+ 1.5
2741
+ ],
2742
+ [
2743
+ 3.0,
2744
+ 1.5,
2745
+ 1.5
2746
+ ],
2747
+ [
2748
+ 3.0,
2749
+ 1.5,
2750
+ 1.5
2751
+ ],
2752
+ [
2753
+ 3.0,
2754
+ 1.5,
2755
+ 1.5
2756
+ ],
2757
+ [
2758
+ 3.0,
2759
+ 1.5,
2760
+ 1.5
2761
+ ],
2762
+ [
2763
+ 3.0,
2764
+ 1.5,
2765
+ 1.5
2766
+ ],
2767
+ [
2768
+ 3.0,
2769
+ 1.5,
2770
+ 1.5
2771
+ ],
2772
+ [
2773
+ 3.0,
2774
+ 1.5,
2775
+ 1.5
2776
+ ],
2777
+ [
2778
+ 3.0,
2779
+ 1.5,
2780
+ 1.5
2781
+ ],
2782
+ [
2783
+ 3.0,
2784
+ 1.5,
2785
+ 1.5
2786
+ ],
2787
+ [
2788
+ 3.0,
2789
+ 1.5,
2790
+ 1.5
2791
+ ],
2792
+ [
2793
+ 3.0,
2794
+ 1.5,
2795
+ 1.5
2796
+ ],
2797
+ [
2798
+ 3.0,
2799
+ 1.5,
2800
+ 1.5
2801
+ ],
2802
+ [
2803
+ 3.0,
2804
+ 1.5,
2805
+ 1.5
2806
+ ],
2807
+ [
2808
+ 3.0,
2809
+ 1.5,
2810
+ 1.5
2811
+ ],
2812
+ [
2813
+ 3.0,
2814
+ 1.5,
2815
+ 1.5
2816
+ ],
2817
+ [
2818
+ 3.0,
2819
+ 1.5,
2820
+ 1.5
2821
+ ],
2822
+ [
2823
+ 3.0,
2824
+ 1.5,
2825
+ 1.5
2826
+ ],
2827
+ [
2828
+ 3.0,
2829
+ 1.5,
2830
+ 1.5
2831
+ ],
2832
+ [
2833
+ 3.0,
2834
+ 1.5,
2835
+ 1.5
2836
+ ],
2837
+ [
2838
+ 3.0,
2839
+ 1.5,
2840
+ 1.5
2841
+ ],
2842
+ [
2843
+ 3.0,
2844
+ 1.5,
2845
+ 1.5
2846
+ ],
2847
+ [
2848
+ 3.0,
2849
+ 1.5,
2850
+ 1.5
2851
+ ],
2852
+ [
2853
+ 3.0,
2854
+ 1.5,
2855
+ 1.5
2856
+ ],
2857
+ [
2858
+ 3.0,
2859
+ 1.5,
2860
+ 1.5
2861
+ ],
2862
+ [
2863
+ 3.0,
2864
+ 1.5,
2865
+ 1.5
2866
+ ],
2867
+ [
2868
+ 3.0,
2869
+ 1.5,
2870
+ 1.5
2871
+ ],
2872
+ [
2873
+ 3.0,
2874
+ 1.5,
2875
+ 1.5
2876
+ ],
2877
+ [
2878
+ 3.0,
2879
+ 1.5,
2880
+ 1.5
2881
+ ],
2882
+ [
2883
+ 3.0,
2884
+ 1.5,
2885
+ 1.5
2886
+ ],
2887
+ [
2888
+ 3.0,
2889
+ 1.5,
2890
+ 1.5
2891
+ ],
2892
+ [
2893
+ 3.0,
2894
+ 1.5,
2895
+ 1.5
2896
+ ],
2897
+ [
2898
+ 3.0,
2899
+ 1.5,
2900
+ 1.5
2901
+ ],
2902
+ [
2903
+ 3.0,
2904
+ 1.5,
2905
+ 1.5
2906
+ ],
2907
+ [
2908
+ 3.0,
2909
+ 1.5,
2910
+ 1.5
2911
+ ],
2912
+ [
2913
+ 3.0,
2914
+ 1.5,
2915
+ 1.5
2916
+ ],
2917
+ [
2918
+ 3.0,
2919
+ 1.5,
2920
+ 1.5
2921
+ ],
2922
+ [
2923
+ 3.0,
2924
+ 1.5,
2925
+ 1.5
2926
+ ],
2927
+ [
2928
+ 3.0,
2929
+ 1.5,
2930
+ 1.5
2931
+ ],
2932
+ [
2933
+ 3.0,
2934
+ 1.5,
2935
+ 1.5
2936
+ ],
2937
+ [
2938
+ 3.0,
2939
+ 1.5,
2940
+ 1.5
2941
+ ],
2942
+ [
2943
+ 3.0,
2944
+ 1.5,
2945
+ 1.5
2946
+ ],
2947
+ [
2948
+ 3.0,
2949
+ 1.5,
2950
+ 1.5
2951
+ ],
2952
+ [
2953
+ 3.0,
2954
+ 1.5,
2955
+ 1.5
2956
+ ],
2957
+ [
2958
+ 3.0,
2959
+ 1.5,
2960
+ 1.5
2961
+ ],
2962
+ [
2963
+ 3.0,
2964
+ 1.5,
2965
+ 1.5
2966
+ ],
2967
+ [
2968
+ 3.0,
2969
+ 1.5,
2970
+ 1.5
2971
+ ],
2972
+ [
2973
+ 3.0,
2974
+ 1.5,
2975
+ 1.5
2976
+ ],
2977
+ [
2978
+ 3.0,
2979
+ 1.5,
2980
+ 1.5
2981
+ ],
2982
+ [
2983
+ 3.0,
2984
+ 1.5,
2985
+ 1.5
2986
+ ],
2987
+ [
2988
+ 3.0,
2989
+ 1.5,
2990
+ 1.5
2991
+ ],
2992
+ [
2993
+ 3.0,
2994
+ 1.5,
2995
+ 1.5
2996
+ ],
2997
+ [
2998
+ 3.0,
2999
+ 1.5,
3000
+ 1.5
3001
+ ],
3002
+ [
3003
+ 3.0,
3004
+ 1.5,
3005
+ 1.5
3006
+ ],
3007
+ [
3008
+ 3.0,
3009
+ 1.5,
3010
+ 1.5
3011
+ ],
3012
+ [
3013
+ 3.0,
3014
+ 1.5,
3015
+ 1.5
3016
+ ],
3017
+ [
3018
+ 3.0,
3019
+ 1.5,
3020
+ 1.5
3021
+ ],
3022
+ [
3023
+ 3.0,
3024
+ 1.5,
3025
+ 1.5
3026
+ ],
3027
+ [
3028
+ 3.0,
3029
+ 1.5,
3030
+ 1.5
3031
+ ],
3032
+ [
3033
+ 3.0,
3034
+ 1.5,
3035
+ 1.5
3036
+ ],
3037
+ [
3038
+ 3.0,
3039
+ 1.5,
3040
+ 1.5
3041
+ ],
3042
+ [
3043
+ 3.0,
3044
+ 1.5,
3045
+ 1.5
3046
+ ],
3047
+ [
3048
+ 3.0,
3049
+ 1.5,
3050
+ 1.5
3051
+ ],
3052
+ [
3053
+ 3.0,
3054
+ 1.5,
3055
+ 1.5
3056
+ ],
3057
+ [
3058
+ 3.0,
3059
+ 1.5,
3060
+ 1.5
3061
+ ],
3062
+ [
3063
+ 3.0,
3064
+ 1.5,
3065
+ 1.5
3066
+ ],
3067
+ [
3068
+ 3.0,
3069
+ 1.5,
3070
+ 1.5
3071
+ ],
3072
+ [
3073
+ 3.0,
3074
+ 1.5,
3075
+ 1.5
3076
+ ],
3077
+ [
3078
+ 3.0,
3079
+ 1.5,
3080
+ 1.5
3081
+ ],
3082
+ [
3083
+ 3.0,
3084
+ 1.5,
3085
+ 1.5
3086
+ ],
3087
+ [
3088
+ 3.0,
3089
+ 1.5,
3090
+ 1.5
3091
+ ],
3092
+ [
3093
+ 3.0,
3094
+ 1.5,
3095
+ 1.5
3096
+ ],
3097
+ [
3098
+ 3.0,
3099
+ 1.5,
3100
+ 1.5
3101
+ ],
3102
+ [
3103
+ 3.0,
3104
+ 1.5,
3105
+ 1.5
3106
+ ],
3107
+ [
3108
+ 3.0,
3109
+ 1.5,
3110
+ 1.5
3111
+ ],
3112
+ [
3113
+ 3.0,
3114
+ 1.5,
3115
+ 1.5
3116
+ ],
3117
+ [
3118
+ 3.0,
3119
+ 1.5,
3120
+ 1.5
3121
+ ],
3122
+ [
3123
+ 3.0,
3124
+ 1.5,
3125
+ 1.5
3126
+ ],
3127
+ [
3128
+ 3.0,
3129
+ 1.5,
3130
+ 1.5
3131
+ ],
3132
+ [
3133
+ 3.0,
3134
+ 1.5,
3135
+ 1.5
3136
+ ],
3137
+ [
3138
+ 3.0,
3139
+ 1.5,
3140
+ 1.5
3141
+ ],
3142
+ [
3143
+ 3.0,
3144
+ 1.5,
3145
+ 1.5
3146
+ ],
3147
+ [
3148
+ 3.0,
3149
+ 1.5,
3150
+ 1.5
3151
+ ],
3152
+ [
3153
+ 3.0,
3154
+ 1.5,
3155
+ 1.5
3156
+ ],
3157
+ [
3158
+ 3.0,
3159
+ 1.5,
3160
+ 1.5
3161
+ ],
3162
+ [
3163
+ 3.0,
3164
+ 1.5,
3165
+ 1.5
3166
+ ],
3167
+ [
3168
+ 3.0,
3169
+ 1.5,
3170
+ 1.5
3171
+ ],
3172
+ [
3173
+ 3.0,
3174
+ 1.5,
3175
+ 1.5
3176
+ ],
3177
+ [
3178
+ 3.0,
3179
+ 1.5,
3180
+ 1.5
3181
+ ],
3182
+ [
3183
+ 3.0,
3184
+ 1.5,
3185
+ 1.5
3186
+ ],
3187
+ [
3188
+ 3.0,
3189
+ 1.5,
3190
+ 1.5
3191
+ ],
3192
+ [
3193
+ 3.0,
3194
+ 1.5,
3195
+ 1.5
3196
+ ],
3197
+ [
3198
+ 3.0,
3199
+ 1.5,
3200
+ 1.5
3201
+ ],
3202
+ [
3203
+ 3.0,
3204
+ 1.5,
3205
+ 1.5
3206
+ ],
3207
+ [
3208
+ 3.0,
3209
+ 1.5,
3210
+ 1.5
3211
+ ],
3212
+ [
3213
+ 3.0,
3214
+ 1.5,
3215
+ 1.5
3216
+ ],
3217
+ [
3218
+ 3.0,
3219
+ 1.5,
3220
+ 1.5
3221
+ ],
3222
+ [
3223
+ 3.0,
3224
+ 1.5,
3225
+ 1.5
3226
+ ],
3227
+ [
3228
+ 3.0,
3229
+ 1.5,
3230
+ 1.5
3231
+ ],
3232
+ [
3233
+ 3.0,
3234
+ 1.5,
3235
+ 1.5
3236
+ ],
3237
+ [
3238
+ 3.0,
3239
+ 1.5,
3240
+ 1.5
3241
+ ],
3242
+ [
3243
+ 3.0,
3244
+ 1.5,
3245
+ 1.5
3246
+ ],
3247
+ [
3248
+ 3.0,
3249
+ 1.5,
3250
+ 1.5
3251
+ ],
3252
+ [
3253
+ 3.0,
3254
+ 1.5,
3255
+ 1.5
3256
+ ],
3257
+ [
3258
+ 3.0,
3259
+ 1.5,
3260
+ 1.5
3261
+ ],
3262
+ [
3263
+ 3.0,
3264
+ 1.5,
3265
+ 1.5
3266
+ ],
3267
+ [
3268
+ 3.0,
3269
+ 1.5,
3270
+ 1.5
3271
+ ],
3272
+ [
3273
+ 3.0,
3274
+ 1.5,
3275
+ 1.5
3276
+ ],
3277
+ [
3278
+ 3.0,
3279
+ 1.5,
3280
+ 1.5
3281
+ ],
3282
+ [
3283
+ 3.0,
3284
+ 1.5,
3285
+ 1.5
3286
+ ],
3287
+ [
3288
+ 3.0,
3289
+ 1.5,
3290
+ 1.5
3291
+ ],
3292
+ [
3293
+ 3.0,
3294
+ 1.5,
3295
+ 1.5
3296
+ ],
3297
+ [
3298
+ 3.0,
3299
+ 1.5,
3300
+ 1.5
3301
+ ],
3302
+ [
3303
+ 3.0,
3304
+ 1.5,
3305
+ 1.5
3306
+ ],
3307
+ [
3308
+ 3.0,
3309
+ 1.5,
3310
+ 1.5
3311
+ ],
3312
+ [
3313
+ 3.0,
3314
+ 1.5,
3315
+ 1.5
3316
+ ],
3317
+ [
3318
+ 3.0,
3319
+ 1.5,
3320
+ 1.5
3321
+ ],
3322
+ [
3323
+ 3.0,
3324
+ 1.5,
3325
+ 1.5
3326
+ ],
3327
+ [
3328
+ 3.0,
3329
+ 1.5,
3330
+ 1.5
3331
+ ],
3332
+ [
3333
+ 3.0,
3334
+ 1.5,
3335
+ 1.5
3336
+ ],
3337
+ [
3338
+ 3.0,
3339
+ 1.5,
3340
+ 1.5
3341
+ ],
3342
+ [
3343
+ 3.0,
3344
+ 1.5,
3345
+ 1.5
3346
+ ],
3347
+ [
3348
+ 3.0,
3349
+ 1.5,
3350
+ 1.5
3351
+ ],
3352
+ [
3353
+ 3.0,
3354
+ 1.5,
3355
+ 1.5
3356
+ ],
3357
+ [
3358
+ 3.0,
3359
+ 1.5,
3360
+ 1.5
3361
+ ],
3362
+ [
3363
+ 3.0,
3364
+ 1.5,
3365
+ 1.5
3366
+ ],
3367
+ [
3368
+ 3.0,
3369
+ 1.5,
3370
+ 1.5
3371
+ ],
3372
+ [
3373
+ 3.0,
3374
+ 1.5,
3375
+ 1.5
3376
+ ],
3377
+ [
3378
+ 3.0,
3379
+ 1.5,
3380
+ 1.5
3381
+ ],
3382
+ [
3383
+ 3.0,
3384
+ 1.5,
3385
+ 1.5
3386
+ ],
3387
+ [
3388
+ 3.0,
3389
+ 1.5,
3390
+ 1.5
3391
+ ],
3392
+ [
3393
+ 3.0,
3394
+ 1.5,
3395
+ 1.5
3396
+ ],
3397
+ [
3398
+ 3.0,
3399
+ 1.5,
3400
+ 1.5
3401
+ ],
3402
+ [
3403
+ 3.0,
3404
+ 1.5,
3405
+ 1.5
3406
+ ],
3407
+ [
3408
+ 3.0,
3409
+ 1.5,
3410
+ 1.5
3411
+ ],
3412
+ [
3413
+ 3.0,
3414
+ 1.5,
3415
+ 1.5
3416
+ ],
3417
+ [
3418
+ 3.0,
3419
+ 1.5,
3420
+ 1.5
3421
+ ],
3422
+ [
3423
+ 3.0,
3424
+ 1.5,
3425
+ 1.5
3426
+ ],
3427
+ [
3428
+ 3.0,
3429
+ 1.5,
3430
+ 1.5
3431
+ ],
3432
+ [
3433
+ 3.0,
3434
+ 1.5,
3435
+ 1.5
3436
+ ],
3437
+ [
3438
+ 3.0,
3439
+ 1.5,
3440
+ 1.5
3441
+ ],
3442
+ [
3443
+ 3.0,
3444
+ 1.5,
3445
+ 1.5
3446
+ ],
3447
+ [
3448
+ 3.0,
3449
+ 1.5,
3450
+ 1.5
3451
+ ],
3452
+ [
3453
+ 3.0,
3454
+ 1.5,
3455
+ 1.5
3456
+ ],
3457
+ [
3458
+ 3.0,
3459
+ 1.5,
3460
+ 1.5
3461
+ ],
3462
+ [
3463
+ 3.0,
3464
+ 1.5,
3465
+ 1.5
3466
+ ],
3467
+ [
3468
+ 3.0,
3469
+ 1.5,
3470
+ 1.5
3471
+ ],
3472
+ [
3473
+ 3.0,
3474
+ 1.5,
3475
+ 1.5
3476
+ ],
3477
+ [
3478
+ 3.0,
3479
+ 1.5,
3480
+ 1.5
3481
+ ],
3482
+ [
3483
+ 3.0,
3484
+ 1.5,
3485
+ 1.5
3486
+ ],
3487
+ [
3488
+ 3.0,
3489
+ 1.5,
3490
+ 1.5
3491
+ ],
3492
+ [
3493
+ 3.0,
3494
+ 1.5,
3495
+ 1.5
3496
+ ],
3497
+ [
3498
+ 3.0,
3499
+ 1.5,
3500
+ 1.5
3501
+ ],
3502
+ [
3503
+ 3.0,
3504
+ 1.5,
3505
+ 1.5
3506
+ ],
3507
+ [
3508
+ 3.0,
3509
+ 1.5,
3510
+ 1.5
3511
+ ],
3512
+ [
3513
+ 3.0,
3514
+ 1.5,
3515
+ 1.5
3516
+ ],
3517
+ [
3518
+ 3.0,
3519
+ 1.5,
3520
+ 1.5
3521
+ ],
3522
+ [
3523
+ 3.0,
3524
+ 1.5,
3525
+ 1.5
3526
+ ],
3527
+ [
3528
+ 3.0,
3529
+ 1.5,
3530
+ 1.5
3531
+ ],
3532
+ [
3533
+ 3.0,
3534
+ 1.5,
3535
+ 1.5
3536
+ ],
3537
+ [
3538
+ 3.0,
3539
+ 1.5,
3540
+ 1.5
3541
+ ],
3542
+ [
3543
+ 3.0,
3544
+ 1.5,
3545
+ 1.5
3546
+ ],
3547
+ [
3548
+ 3.0,
3549
+ 1.5,
3550
+ 1.5
3551
+ ],
3552
+ [
3553
+ 3.0,
3554
+ 1.5,
3555
+ 1.5
3556
+ ],
3557
+ [
3558
+ 3.0,
3559
+ 1.5,
3560
+ 1.5
3561
+ ],
3562
+ [
3563
+ 3.0,
3564
+ 1.5,
3565
+ 1.5
3566
+ ],
3567
+ [
3568
+ 3.0,
3569
+ 1.5,
3570
+ 1.5
3571
+ ],
3572
+ [
3573
+ 3.0,
3574
+ 1.5,
3575
+ 1.5
3576
+ ],
3577
+ [
3578
+ 3.0,
3579
+ 1.5,
3580
+ 1.5
3581
+ ],
3582
+ [
3583
+ 3.0,
3584
+ 1.5,
3585
+ 1.5
3586
+ ],
3587
+ [
3588
+ 3.0,
3589
+ 1.5,
3590
+ 1.5
3591
+ ],
3592
+ [
3593
+ 3.0,
3594
+ 1.5,
3595
+ 1.5
3596
+ ],
3597
+ [
3598
+ 3.0,
3599
+ 1.5,
3600
+ 1.5
3601
+ ],
3602
+ [
3603
+ 3.0,
3604
+ 1.5,
3605
+ 1.5
3606
+ ],
3607
+ [
3608
+ 3.0,
3609
+ 1.5,
3610
+ 1.5
3611
+ ],
3612
+ [
3613
+ 3.0,
3614
+ 1.5,
3615
+ 1.5
3616
+ ],
3617
+ [
3618
+ 3.0,
3619
+ 1.5,
3620
+ 1.5
3621
+ ],
3622
+ [
3623
+ 3.0,
3624
+ 1.5,
3625
+ 1.5
3626
+ ],
3627
+ [
3628
+ 3.0,
3629
+ 1.5,
3630
+ 1.5
3631
+ ],
3632
+ [
3633
+ 3.0,
3634
+ 1.5,
3635
+ 1.5
3636
+ ],
3637
+ [
3638
+ 3.0,
3639
+ 1.5,
3640
+ 1.5
3641
+ ],
3642
+ [
3643
+ 3.0,
3644
+ 1.5,
3645
+ 1.5
3646
+ ],
3647
+ [
3648
+ 3.0,
3649
+ 1.5,
3650
+ 1.5
3651
+ ],
3652
+ [
3653
+ 3.0,
3654
+ 1.5,
3655
+ 1.5
3656
+ ],
3657
+ [
3658
+ 3.0,
3659
+ 1.5,
3660
+ 1.5
3661
+ ],
3662
+ [
3663
+ 3.0,
3664
+ 1.5,
3665
+ 1.5
3666
+ ],
3667
+ [
3668
+ 3.0,
3669
+ 1.5,
3670
+ 1.5
3671
+ ],
3672
+ [
3673
+ 3.0,
3674
+ 1.5,
3675
+ 1.5
3676
+ ],
3677
+ [
3678
+ 3.0,
3679
+ 1.5,
3680
+ 1.5
3681
+ ],
3682
+ [
3683
+ 3.0,
3684
+ 1.5,
3685
+ 1.5
3686
+ ]
3687
+ ]
3688
+ }
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e361a1337e64ac1fc72c52674c2d059420658b5d6530b9a3ebb725d874b7eafb
3
+ size 2035697719
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e804e3f50a8e1cad0badd1c7d41be422cd1e4cc5d1f741ef516382868920be
3
+ size 2035740998
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [160.0, 224.0, 224.0], 'spacing': [3.0, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8902,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f683794d290>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f683794e810>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "None",
12
+ "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f683794ead0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f682082ed90>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "None",
16
+ "dataset_json": "{'name': 'TotalSegmentator', 'description': 'Segmentation of TotalSegmentator classes', 'reference': 'https://zenodo.org/record/6802614', 'licence': 'Apache 2.0', 'release': '2.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'small_bowel': 8, 'duodenum': 9, 'colon': 10, 'urinary_bladder': 11, 'prostate': 12, 'kidney_cyst_left': 13, 'kidney_cyst_right': 14, 'sacrum': 15, 'vertebrae_S1': 16, 'vertebrae_L5': 17, 'vertebrae_L4': 18, 'vertebrae_L3': 19, 'vertebrae_L2': 20, 'vertebrae_L1': 21, 'vertebrae_T12': 22}, 'numTraining': 367, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "enable_deep_supervision": "True",
20
+ "fold": "0",
21
+ "folder_with_segs_from_previous_stage": "None",
22
+ "gpu_name": "NVIDIA L40",
23
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f68378fda50>",
24
+ "hostname": "rae1",
25
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
26
+ "initial_lr": "0.01",
27
+ "is_cascaded": "False",
28
+ "is_ddp": "False",
29
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f68378fdb50>",
30
+ "local_rank": "0",
31
+ "log_file": "/dataNAS/people/akkumar/Downloads/abct_imaging_data/nnunet/nnUNet_results/Dataset001_TSORGANS/nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0/training_log_2024_11_13_14_46_33.txt",
32
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f683ff14190>",
33
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f67810d9790>",
35
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_TSORGANS', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 1.5, 1.5], 'original_median_shape_after_transp': [160, 224, 224], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 61, 'patch_size': [224, 224], 'median_image_size_in_voxels': [224.0, 224.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [160.0, 224.0, 224.0], 'spacing': [3.0, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}, 'swin_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [160.0, 224.0, 224.0], 'spacing': [3.0, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}, 'merlin': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 224, 160], 'median_image_size_in_voxels': [224.0, 224.0, 160.0], 'spacing': [1.5, 1.5, 3.0], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 32.16546869334803, 'median': 59.999942779541016, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 842.0, 'std': 242.82777198101266}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'TotalSegmentator', 'description': 'Segmentation of TotalSegmentator classes', 'reference': 'https://zenodo.org/record/6802614', 'licence': 'Apache 2.0', 'release': '2.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'small_bowel': 8, 'duodenum': 9, 'colon': 10, 'urinary_bladder': 11, 'prostate': 12, 'kidney_cyst_left': 13, 'kidney_cyst_right': 14, 'sacrum': 15, 'vertebrae_S1': 16, 'vertebrae_L5': 17, 'vertebrae_L4': 18, 'vertebrae_L3': 19, 'vertebrae_L2': 20, 'vertebrae_L1': 21, 'vertebrae_T12': 22}, 'numTraining': 367, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
36
+ "network": "OptimizedModule",
37
+ "num_epochs": "1000",
38
+ "num_input_channels": "1",
39
+ "num_iterations_per_epoch": "250",
40
+ "num_val_iterations_per_epoch": "50",
41
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
+ "output_folder": "/dataNAS/people/akkumar/Downloads/abct_imaging_data/nnunet/nnUNet_results/Dataset001_TSORGANS/nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0",
43
+ "output_folder_base": "/dataNAS/people/akkumar/Downloads/abct_imaging_data/nnunet/nnUNet_results/Dataset001_TSORGANS/nnUNetTrainerMerlin__nnUNetPlans__3d_fullres",
44
+ "oversample_foreground_percent": "0.33",
45
+ "plans_manager": "{'dataset_name': 'Dataset001_TSORGANS', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 1.5, 1.5], 'original_median_shape_after_transp': [160, 224, 224], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 61, 'patch_size': [224, 224], 'median_image_size_in_voxels': [224.0, 224.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [160.0, 224.0, 224.0], 'spacing': [3.0, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}, 'swin_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [160.0, 224.0, 224.0], 'spacing': [3.0, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}, 'merlin': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [224, 224, 160], 'median_image_size_in_voxels': [224.0, 224.0, 160.0], 'spacing': [1.5, 1.5, 3.0], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 32.16546869334803, 'median': 59.999942779541016, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 842.0, 'std': 242.82777198101266}}}",
46
+ "preprocessed_dataset_folder": "/dataNAS/people/akkumar/Downloads/abct_imaging_data/nnunet/nnUNet_preprocessed/Dataset001_TSORGANS/nnUNetPlans_3d_fullres",
47
+ "preprocessed_dataset_folder_base": "/dataNAS/people/akkumar/Downloads/abct_imaging_data/nnunet/nnUNet_preprocessed/Dataset001_TSORGANS",
48
+ "save_every": "50",
49
+ "torch_version": "2.1.2+cu121",
50
+ "unpack_dataset": "True",
51
+ "was_initialized": "True",
52
+ "weight_decay": "3e-05"
53
+ }
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/fold_0/training_log_2024_11_13_14_46_33.txt ADDED
The diff for this file is too large to render. See raw diff
 
nnUNetTrainerMerlin__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset001_TSORGANS",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 3.0,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 160,
11
+ 224,
12
+ 224
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 61,
30
+ "patch_size": [
31
+ 224,
32
+ 224
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 224.0,
36
+ 224.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
49
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
+ "resampling_fn_data_kwargs": {
51
+ "is_seg": false,
52
+ "order": 3,
53
+ "order_z": 0,
54
+ "force_separate_z": null
55
+ },
56
+ "resampling_fn_seg_kwargs": {
57
+ "is_seg": true,
58
+ "order": 1,
59
+ "order_z": 0,
60
+ "force_separate_z": null
61
+ },
62
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
+ "resampling_fn_probabilities_kwargs": {
64
+ "is_seg": false,
65
+ "order": 1,
66
+ "order_z": 0,
67
+ "force_separate_z": null
68
+ },
69
+ "architecture": {
70
+ "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
71
+ "arch_kwargs": {
72
+ "n_stages": 6,
73
+ "features_per_stage": [
74
+ 32,
75
+ 64,
76
+ 128,
77
+ 256,
78
+ 512,
79
+ 512
80
+ ],
81
+ "conv_op": "torch.nn.modules.conv.Conv2d",
82
+ "kernel_sizes": [
83
+ [
84
+ 3,
85
+ 3
86
+ ],
87
+ [
88
+ 3,
89
+ 3
90
+ ],
91
+ [
92
+ 3,
93
+ 3
94
+ ],
95
+ [
96
+ 3,
97
+ 3
98
+ ],
99
+ [
100
+ 3,
101
+ 3
102
+ ],
103
+ [
104
+ 3,
105
+ 3
106
+ ]
107
+ ],
108
+ "strides": [
109
+ [
110
+ 1,
111
+ 1
112
+ ],
113
+ [
114
+ 2,
115
+ 2
116
+ ],
117
+ [
118
+ 2,
119
+ 2
120
+ ],
121
+ [
122
+ 2,
123
+ 2
124
+ ],
125
+ [
126
+ 2,
127
+ 2
128
+ ],
129
+ [
130
+ 2,
131
+ 2
132
+ ]
133
+ ],
134
+ "n_conv_per_stage": [
135
+ 2,
136
+ 2,
137
+ 2,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "n_conv_per_stage_decoder": [
143
+ 2,
144
+ 2,
145
+ 2,
146
+ 2,
147
+ 2
148
+ ],
149
+ "conv_bias": true,
150
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
151
+ "norm_op_kwargs": {
152
+ "eps": 1e-05,
153
+ "affine": true
154
+ },
155
+ "dropout_op": null,
156
+ "dropout_op_kwargs": null,
157
+ "nonlin": "torch.nn.LeakyReLU",
158
+ "nonlin_kwargs": {
159
+ "inplace": true
160
+ }
161
+ },
162
+ "_kw_requires_import": [
163
+ "conv_op",
164
+ "norm_op",
165
+ "dropout_op",
166
+ "nonlin"
167
+ ]
168
+ },
169
+ "batch_dice": true
170
+ },
171
+ "3d_fullres": {
172
+ "data_identifier": "nnUNetPlans_3d_fullres",
173
+ "preprocessor_name": "DefaultPreprocessor",
174
+ "batch_size": 2,
175
+ "patch_size": [
176
+ 112,
177
+ 128,
178
+ 128
179
+ ],
180
+ "median_image_size_in_voxels": [
181
+ 160.0,
182
+ 224.0,
183
+ 224.0
184
+ ],
185
+ "spacing": [
186
+ 3.0,
187
+ 1.5,
188
+ 1.5
189
+ ],
190
+ "normalization_schemes": [
191
+ "CTNormalization"
192
+ ],
193
+ "use_mask_for_norm": [
194
+ false
195
+ ],
196
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
197
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
198
+ "resampling_fn_data_kwargs": {
199
+ "is_seg": false,
200
+ "order": 3,
201
+ "order_z": 0,
202
+ "force_separate_z": null
203
+ },
204
+ "resampling_fn_seg_kwargs": {
205
+ "is_seg": true,
206
+ "order": 1,
207
+ "order_z": 0,
208
+ "force_separate_z": null
209
+ },
210
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
211
+ "resampling_fn_probabilities_kwargs": {
212
+ "is_seg": false,
213
+ "order": 1,
214
+ "order_z": 0,
215
+ "force_separate_z": null
216
+ },
217
+ "architecture": {
218
+ "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
219
+ "arch_kwargs": {
220
+ "n_stages": 6,
221
+ "features_per_stage": [
222
+ 32,
223
+ 64,
224
+ 128,
225
+ 256,
226
+ 320,
227
+ 320
228
+ ],
229
+ "conv_op": "torch.nn.modules.conv.Conv3d",
230
+ "kernel_sizes": [
231
+ [
232
+ 1,
233
+ 3,
234
+ 3
235
+ ],
236
+ [
237
+ 3,
238
+ 3,
239
+ 3
240
+ ],
241
+ [
242
+ 3,
243
+ 3,
244
+ 3
245
+ ],
246
+ [
247
+ 3,
248
+ 3,
249
+ 3
250
+ ],
251
+ [
252
+ 3,
253
+ 3,
254
+ 3
255
+ ],
256
+ [
257
+ 3,
258
+ 3,
259
+ 3
260
+ ]
261
+ ],
262
+ "strides": [
263
+ [
264
+ 1,
265
+ 1,
266
+ 1
267
+ ],
268
+ [
269
+ 1,
270
+ 2,
271
+ 2
272
+ ],
273
+ [
274
+ 2,
275
+ 2,
276
+ 2
277
+ ],
278
+ [
279
+ 2,
280
+ 2,
281
+ 2
282
+ ],
283
+ [
284
+ 2,
285
+ 2,
286
+ 2
287
+ ],
288
+ [
289
+ 2,
290
+ 2,
291
+ 2
292
+ ]
293
+ ],
294
+ "n_conv_per_stage": [
295
+ 2,
296
+ 2,
297
+ 2,
298
+ 2,
299
+ 2,
300
+ 2
301
+ ],
302
+ "n_conv_per_stage_decoder": [
303
+ 2,
304
+ 2,
305
+ 2,
306
+ 2,
307
+ 2
308
+ ],
309
+ "conv_bias": true,
310
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
311
+ "norm_op_kwargs": {
312
+ "eps": 1e-05,
313
+ "affine": true
314
+ },
315
+ "dropout_op": null,
316
+ "dropout_op_kwargs": null,
317
+ "nonlin": "torch.nn.LeakyReLU",
318
+ "nonlin_kwargs": {
319
+ "inplace": true
320
+ }
321
+ },
322
+ "_kw_requires_import": [
323
+ "conv_op",
324
+ "norm_op",
325
+ "dropout_op",
326
+ "nonlin"
327
+ ]
328
+ },
329
+ "batch_dice": false
330
+ },
331
+ "swin_fullres": {
332
+ "data_identifier": "nnUNetPlans_3d_fullres",
333
+ "preprocessor_name": "DefaultPreprocessor",
334
+ "batch_size": 2,
335
+ "patch_size": [
336
+ 128,
337
+ 128,
338
+ 128
339
+ ],
340
+ "median_image_size_in_voxels": [
341
+ 160.0,
342
+ 224.0,
343
+ 224.0
344
+ ],
345
+ "spacing": [
346
+ 3.0,
347
+ 1.5,
348
+ 1.5
349
+ ],
350
+ "normalization_schemes": [
351
+ "CTNormalization"
352
+ ],
353
+ "use_mask_for_norm": [
354
+ false
355
+ ],
356
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
357
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
358
+ "resampling_fn_data_kwargs": {
359
+ "is_seg": false,
360
+ "order": 3,
361
+ "order_z": 0,
362
+ "force_separate_z": null
363
+ },
364
+ "resampling_fn_seg_kwargs": {
365
+ "is_seg": true,
366
+ "order": 1,
367
+ "order_z": 0,
368
+ "force_separate_z": null
369
+ },
370
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
371
+ "resampling_fn_probabilities_kwargs": {
372
+ "is_seg": false,
373
+ "order": 1,
374
+ "order_z": 0,
375
+ "force_separate_z": null
376
+ },
377
+ "architecture": {
378
+ "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
379
+ "arch_kwargs": {
380
+ "n_stages": 6,
381
+ "features_per_stage": [
382
+ 32,
383
+ 64,
384
+ 128,
385
+ 256,
386
+ 320,
387
+ 320
388
+ ],
389
+ "conv_op": "torch.nn.modules.conv.Conv3d",
390
+ "kernel_sizes": [
391
+ [
392
+ 1,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ],
401
+ [
402
+ 3,
403
+ 3,
404
+ 3
405
+ ],
406
+ [
407
+ 3,
408
+ 3,
409
+ 3
410
+ ],
411
+ [
412
+ 3,
413
+ 3,
414
+ 3
415
+ ],
416
+ [
417
+ 3,
418
+ 3,
419
+ 3
420
+ ]
421
+ ],
422
+ "strides": [
423
+ [
424
+ 1,
425
+ 1,
426
+ 1
427
+ ],
428
+ [
429
+ 1,
430
+ 2,
431
+ 2
432
+ ],
433
+ [
434
+ 2,
435
+ 2,
436
+ 2
437
+ ],
438
+ [
439
+ 2,
440
+ 2,
441
+ 2
442
+ ],
443
+ [
444
+ 2,
445
+ 2,
446
+ 2
447
+ ],
448
+ [
449
+ 2,
450
+ 2,
451
+ 2
452
+ ]
453
+ ],
454
+ "n_conv_per_stage": [
455
+ 2,
456
+ 2,
457
+ 2,
458
+ 2,
459
+ 2,
460
+ 2
461
+ ],
462
+ "n_conv_per_stage_decoder": [
463
+ 2,
464
+ 2,
465
+ 2,
466
+ 2,
467
+ 2
468
+ ],
469
+ "conv_bias": true,
470
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
471
+ "norm_op_kwargs": {
472
+ "eps": 1e-05,
473
+ "affine": true
474
+ },
475
+ "dropout_op": null,
476
+ "dropout_op_kwargs": null,
477
+ "nonlin": "torch.nn.LeakyReLU",
478
+ "nonlin_kwargs": {
479
+ "inplace": true
480
+ }
481
+ },
482
+ "_kw_requires_import": [
483
+ "conv_op",
484
+ "norm_op",
485
+ "dropout_op",
486
+ "nonlin"
487
+ ]
488
+ },
489
+ "batch_dice": false
490
+ },
491
+ "merlin": {
492
+ "data_identifier": "nnUNetPlans_3d_fullres",
493
+ "preprocessor_name": "DefaultPreprocessor",
494
+ "batch_size": 2,
495
+ "patch_size": [
496
+ 224,
497
+ 224,
498
+ 160
499
+ ],
500
+ "median_image_size_in_voxels": [
501
+ 224.0,
502
+ 224.0,
503
+ 160.0
504
+ ],
505
+ "spacing": [
506
+ 1.5,
507
+ 1.5,
508
+ 3.0
509
+ ],
510
+ "normalization_schemes": [
511
+ "CTNormalization"
512
+ ],
513
+ "use_mask_for_norm": [
514
+ false
515
+ ],
516
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
517
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
518
+ "resampling_fn_data_kwargs": {
519
+ "is_seg": false,
520
+ "order": 3,
521
+ "order_z": 0,
522
+ "force_separate_z": null
523
+ },
524
+ "resampling_fn_seg_kwargs": {
525
+ "is_seg": true,
526
+ "order": 1,
527
+ "order_z": 0,
528
+ "force_separate_z": null
529
+ },
530
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
531
+ "resampling_fn_probabilities_kwargs": {
532
+ "is_seg": false,
533
+ "order": 1,
534
+ "order_z": 0,
535
+ "force_separate_z": null
536
+ },
537
+ "architecture": {
538
+ "network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
539
+ "arch_kwargs": {
540
+ "n_stages": 6,
541
+ "features_per_stage": [
542
+ 32,
543
+ 64,
544
+ 128,
545
+ 256,
546
+ 320,
547
+ 320
548
+ ],
549
+ "conv_op": "torch.nn.modules.conv.Conv3d",
550
+ "kernel_sizes": [
551
+ [
552
+ 1,
553
+ 3,
554
+ 3
555
+ ],
556
+ [
557
+ 3,
558
+ 3,
559
+ 3
560
+ ],
561
+ [
562
+ 3,
563
+ 3,
564
+ 3
565
+ ],
566
+ [
567
+ 3,
568
+ 3,
569
+ 3
570
+ ],
571
+ [
572
+ 3,
573
+ 3,
574
+ 3
575
+ ],
576
+ [
577
+ 3,
578
+ 3,
579
+ 3
580
+ ]
581
+ ],
582
+ "strides": [
583
+ [
584
+ 1,
585
+ 1,
586
+ 1
587
+ ],
588
+ [
589
+ 1,
590
+ 2,
591
+ 2
592
+ ],
593
+ [
594
+ 2,
595
+ 2,
596
+ 2
597
+ ],
598
+ [
599
+ 2,
600
+ 2,
601
+ 2
602
+ ],
603
+ [
604
+ 2,
605
+ 2,
606
+ 2
607
+ ],
608
+ [
609
+ 2,
610
+ 2,
611
+ 2
612
+ ]
613
+ ],
614
+ "n_conv_per_stage": [
615
+ 2,
616
+ 2,
617
+ 2,
618
+ 2,
619
+ 2,
620
+ 2
621
+ ],
622
+ "n_conv_per_stage_decoder": [
623
+ 2,
624
+ 2,
625
+ 2,
626
+ 2,
627
+ 2
628
+ ],
629
+ "conv_bias": true,
630
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
631
+ "norm_op_kwargs": {
632
+ "eps": 1e-05,
633
+ "affine": true
634
+ },
635
+ "dropout_op": null,
636
+ "dropout_op_kwargs": null,
637
+ "nonlin": "torch.nn.LeakyReLU",
638
+ "nonlin_kwargs": {
639
+ "inplace": true
640
+ }
641
+ },
642
+ "_kw_requires_import": [
643
+ "conv_op",
644
+ "norm_op",
645
+ "dropout_op",
646
+ "nonlin"
647
+ ]
648
+ },
649
+ "batch_dice": false
650
+ }
651
+ },
652
+ "experiment_planner_used": "ExperimentPlanner",
653
+ "label_manager": "LabelManager",
654
+ "foreground_intensity_properties_per_channel": {
655
+ "0": {
656
+ "max": 1000.0,
657
+ "mean": 32.16546869334803,
658
+ "median": 59.999942779541016,
659
+ "min": -1000.0,
660
+ "percentile_00_5": -1000.0,
661
+ "percentile_99_5": 842.0,
662
+ "std": 242.82777198101266
663
+ }
664
+ }
665
+ }