Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,419 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
library_name: transformers
|
| 4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
library_name: transformers
|
| 4 |
+
---
|
| 5 |
+
<div align="center">
|
| 6 |
+
<picture>
|
| 7 |
+
<img src="stepfun-logo.png" width="30%" alt="StepFun: Cost-Effective Multimodal Intelligence">
|
| 8 |
+
</picture>
|
| 9 |
+
</div>
|
| 10 |
+
|
| 11 |
+
<hr>
|
| 12 |
+
|
| 13 |
+
<div align="center" style="line-height:1">
|
| 14 |
+
<a href="https://stepfun.com/" target="_blank"><img alt="Chat" src="https://img.shields.io/badge/Chat-StepFun-ff6b6b?color=1783ff&logoColor=white"/></a>
|
| 15 |
+
<a href="https://stepfun.com/" target="_blank"><img alt="Homepage" src="https://img.shields.io/badge/Homepage-StepFun-white?logo=StepFun&logoColor=white"/></a>
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
<div align="center" style="line-height: 1;">
|
| 19 |
+
<a href="https://github.com/stepfun-ai/Step3" target="_blank"><img alt="Github" src="https://img.shields.io/badge/🤖Github-StepFun-ffc107?color=ffc107&logoColor=white"/></a>
|
| 20 |
+
<a href="https://www.modelscope.cn/models/stepfun-ai/step3" target="_blank"><img alt="ModelScope" src="https://img.shields.io/badge/🤖ModelScope-StepFun-ffc107?color=7963eb&logoColor=white"/></a>
|
| 21 |
+
<a href="https://x.com/StepFun_ai" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-StepFun-white?logo=x&logoColor=white"/></a>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
<div align="center" style="line-height: 1;">
|
| 25 |
+
<a href="https://discord.com/invite/XHheP5Fn" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-StepFun-white?logo=discord&logoColor=white"/></a>
|
| 26 |
+
<a href="LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Apache%202.0-blue?&color=blue"/></a>
|
| 27 |
+
</div>
|
| 28 |
+
|
| 29 |
+
<div align="center">
|
| 30 |
+
<b>📰 <a href="https://stepfun.ai/research/step3">Step3 Model Blog</a></b> | <b>📄 <a href="https://arxiv.org/abs/2507.19427">Step3 System Blog</a></b>
|
| 31 |
+
</div>
|
| 32 |
+
|
| 33 |
+
## Introduction
|
| 34 |
+
|
| 35 |
+
Step3 is our cutting-edge multimodal reasoning model—built on a Mixture-of-Experts architecture with 321B total parameters and 38B active.
|
| 36 |
+
It is designed end-to-end to minimize decoding costs while delivering top-tier performance in vision–language reasoning.
|
| 37 |
+
Through the co-design of Multi-Matrix Factorization Attention (MFA) and Attention-FFN Disaggregation (AFD),
|
| 38 |
+
Step3 maintains exceptional efficiency across both flagship and low-end accelerators.
|
| 39 |
+
|
| 40 |
+
### Step3 model card:
|
| 41 |
+
|
| 42 |
+
| Config | Value |
|
| 43 |
+
|------------------------|---------|
|
| 44 |
+
| **Number of Layers (Dense layer included)**|61|
|
| 45 |
+
|**Number of Dense Layers**| 5|
|
| 46 |
+
| **Hidden Dimension** | 7168 |
|
| 47 |
+
| **Attention Mechanism** | MFA |
|
| 48 |
+
| **Low-rank Query Dimension** | 2048 |
|
| 49 |
+
| **Number of Query Heads** | 64 |
|
| 50 |
+
| **Head Dimension** | 256 |
|
| 51 |
+
|**Number of Experts** |48|
|
| 52 |
+
|**Selected Experts per Token**|3|
|
| 53 |
+
|**Number of Shared Experts**| 1|
|
| 54 |
+
| **Max Context Length** | 65536 |
|
| 55 |
+
| **Tokenizer** | Deepseek V3 |
|
| 56 |
+
| **Total Parameters (LLM)** | 316B |
|
| 57 |
+
| **Activated Params per Token** | 38B |
|
| 58 |
+
| **Total Parameters (VLM)** | 321B |
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## Evaluation Results
|
| 62 |
+
<table>
|
| 63 |
+
<thead>
|
| 64 |
+
<tr>
|
| 65 |
+
<th></th>
|
| 66 |
+
<th>Model</th>
|
| 67 |
+
<th>Total Params.</th>
|
| 68 |
+
<th>MMMU</th>
|
| 69 |
+
<th>MathVision</th>
|
| 70 |
+
<th>ZeroBench(sub)</th>
|
| 71 |
+
<th>DYNAMATH</th>
|
| 72 |
+
<th>SimpleVQA</th>
|
| 73 |
+
<th>HallusionBench</th>
|
| 74 |
+
<th>AIME25</th>
|
| 75 |
+
<th>HMMT25</th>
|
| 76 |
+
<th>CNMO24</th>
|
| 77 |
+
<th>GPQA-Diamond</th>
|
| 78 |
+
<th>LiveCodeBench<br>(24.8-25.5)</th>
|
| 79 |
+
</tr>
|
| 80 |
+
</thead>
|
| 81 |
+
<tbody>
|
| 82 |
+
<tr>
|
| 83 |
+
<td rowspan="6">Open-Source VLM</td>
|
| 84 |
+
<td>Step3</td>
|
| 85 |
+
<td>321B</td>
|
| 86 |
+
<td>74.2</td>
|
| 87 |
+
<td>64.8</td>
|
| 88 |
+
<td>23.0</td>
|
| 89 |
+
<td>50.1</td>
|
| 90 |
+
<td>62.2</td>
|
| 91 |
+
<td>64.2</td>
|
| 92 |
+
<td>82.9</td>
|
| 93 |
+
<td>70.0</td>
|
| 94 |
+
<td>83.7</td>
|
| 95 |
+
<td>73.0</td>
|
| 96 |
+
<td>67.1</td>
|
| 97 |
+
</tr>
|
| 98 |
+
<tr>
|
| 99 |
+
<td>ERINE4.5 - thinking</td>
|
| 100 |
+
<td>300B/424B</td>
|
| 101 |
+
<td>70.0</td>
|
| 102 |
+
<td>47.6</td>
|
| 103 |
+
<td>22.5</td>
|
| 104 |
+
<td>46.9</td>
|
| 105 |
+
<td>59.8</td>
|
| 106 |
+
<td>60.0</td>
|
| 107 |
+
<td>35.1</td>
|
| 108 |
+
<td>40.5*</td>
|
| 109 |
+
<td>75.5</td>
|
| 110 |
+
<td>76.8</td>
|
| 111 |
+
<td>38.8</td>
|
| 112 |
+
</tr>
|
| 113 |
+
<tr>
|
| 114 |
+
<td>GLM-4.1V-thinking</td>
|
| 115 |
+
<td>9B</td>
|
| 116 |
+
<td>68.0</td>
|
| 117 |
+
<td>49.4</td>
|
| 118 |
+
<td>22.8</td>
|
| 119 |
+
<td>41.9</td>
|
| 120 |
+
<td>48.1</td>
|
| 121 |
+
<td>60.8</td>
|
| 122 |
+
<td>13.3</td>
|
| 123 |
+
<td>6.7</td>
|
| 124 |
+
<td>25.0</td>
|
| 125 |
+
<td>47.4</td>
|
| 126 |
+
<td>24.2</td>
|
| 127 |
+
</tr>
|
| 128 |
+
<tr>
|
| 129 |
+
<td>MiMo-VL</td>
|
| 130 |
+
<td>7B</td>
|
| 131 |
+
<td>66.7</td>
|
| 132 |
+
<td>60.4</td>
|
| 133 |
+
<td>18.6</td>
|
| 134 |
+
<td>45.9</td>
|
| 135 |
+
<td>48.5</td>
|
| 136 |
+
<td>59.6</td>
|
| 137 |
+
<td>60.0</td>
|
| 138 |
+
<td>34.6</td>
|
| 139 |
+
<td>69.9</td>
|
| 140 |
+
<td>55.5</td>
|
| 141 |
+
<td>50.1</td>
|
| 142 |
+
</tr>
|
| 143 |
+
<tr>
|
| 144 |
+
<td>QvQ-72B-Preview</td>
|
| 145 |
+
<td>72B</td>
|
| 146 |
+
<td>70.3</td>
|
| 147 |
+
<td>35.9</td>
|
| 148 |
+
<td>15.9</td>
|
| 149 |
+
<td>30.7</td>
|
| 150 |
+
<td>40.3</td>
|
| 151 |
+
<td>50.8</td>
|
| 152 |
+
<td>22.7</td>
|
| 153 |
+
<td>49.5</td>
|
| 154 |
+
<td>47.3</td>
|
| 155 |
+
<td>10.9</td>
|
| 156 |
+
<td>24.1</td>
|
| 157 |
+
</tr>
|
| 158 |
+
<tr>
|
| 159 |
+
<td>LLaMA-Maverick</td>
|
| 160 |
+
<td>400B</td>
|
| 161 |
+
<td>73.4</td>
|
| 162 |
+
<td>47.2</td>
|
| 163 |
+
<td>22.8</td>
|
| 164 |
+
<td>47.1</td>
|
| 165 |
+
<td>45.4</td>
|
| 166 |
+
<td>57.1</td>
|
| 167 |
+
<td>19.2</td>
|
| 168 |
+
<td>8.91</td>
|
| 169 |
+
<td>41.6</td>
|
| 170 |
+
<td>69.8</td>
|
| 171 |
+
<td>33.9</td>
|
| 172 |
+
</tr>
|
| 173 |
+
<tr>
|
| 174 |
+
<td rowspan="4">Open-Source LLM</td>
|
| 175 |
+
<td>MiniMax-M1-80k</td>
|
| 176 |
+
<td>456B</td>
|
| 177 |
+
<td>-</td>
|
| 178 |
+
<td>-</td>
|
| 179 |
+
<td>-</td>
|
| 180 |
+
<td>-</td>
|
| 181 |
+
<td>-</td>
|
| 182 |
+
<td>-</td>
|
| 183 |
+
<td>76.9</td>
|
| 184 |
+
<td>-</td>
|
| 185 |
+
<td>-</td>
|
| 186 |
+
<td>70.0</td>
|
| 187 |
+
<td>65.0</td>
|
| 188 |
+
</tr>
|
| 189 |
+
<tr>
|
| 190 |
+
<td>Qwen3-235B-A22B-Thinking</td>
|
| 191 |
+
<td>235B</td>
|
| 192 |
+
<td>-</td>
|
| 193 |
+
<td>-</td>
|
| 194 |
+
<td>-</td>
|
| 195 |
+
<td>-</td>
|
| 196 |
+
<td>-</td>
|
| 197 |
+
<td>-</td>
|
| 198 |
+
<td>81.5</td>
|
| 199 |
+
<td>62.5</td>
|
| 200 |
+
<td>-</td>
|
| 201 |
+
<td>71.1</td>
|
| 202 |
+
<td>65.9</td>
|
| 203 |
+
</tr>
|
| 204 |
+
<tr>
|
| 205 |
+
<td>DeepSeek R1-0528</td>
|
| 206 |
+
<td>671B</td>
|
| 207 |
+
<td>-</td>
|
| 208 |
+
<td>-</td>
|
| 209 |
+
<td>-</td>
|
| 210 |
+
<td>-</td>
|
| 211 |
+
<td>-</td>
|
| 212 |
+
<td>-</td>
|
| 213 |
+
<td>87.5</td>
|
| 214 |
+
<td>79.4</td>
|
| 215 |
+
<td>86.9</td>
|
| 216 |
+
<td>81.0</td>
|
| 217 |
+
<td>73.3</td>
|
| 218 |
+
</tr>
|
| 219 |
+
<tr>
|
| 220 |
+
<td>Qwen3-235B-A22B-Thinking-2507</td>
|
| 221 |
+
<td>235B</td>
|
| 222 |
+
<td>-</td>
|
| 223 |
+
<td>-</td>
|
| 224 |
+
<td>-</td>
|
| 225 |
+
<td>-</td>
|
| 226 |
+
<td>-</td>
|
| 227 |
+
<td>-</td>
|
| 228 |
+
<td>92.3</td>
|
| 229 |
+
<td>83.9</td>
|
| 230 |
+
<td>-</td>
|
| 231 |
+
<td>81.1</td>
|
| 232 |
+
<td>-</td>
|
| 233 |
+
</tr>
|
| 234 |
+
<tr>
|
| 235 |
+
<td rowspan="6">Proprietary VLM</td>
|
| 236 |
+
<td>O3</td>
|
| 237 |
+
<td>-</td>
|
| 238 |
+
<td>82.9</td>
|
| 239 |
+
<td>72.8</td>
|
| 240 |
+
<td>25.2</td>
|
| 241 |
+
<td>58.1</td>
|
| 242 |
+
<td>59.8</td>
|
| 243 |
+
<td>60.1</td>
|
| 244 |
+
<td>88.9</td>
|
| 245 |
+
<td>70.1</td>
|
| 246 |
+
<td>86.7</td>
|
| 247 |
+
<td>83.3</td>
|
| 248 |
+
<td>75.8</td>
|
| 249 |
+
</tr>
|
| 250 |
+
<tr>
|
| 251 |
+
<td>Claude4 Sonnet (thinking)</td>
|
| 252 |
+
<td>-</td>
|
| 253 |
+
<td>76.9</td>
|
| 254 |
+
<td>64.6</td>
|
| 255 |
+
<td>26.1</td>
|
| 256 |
+
<td>48.1</td>
|
| 257 |
+
<td>43.7</td>
|
| 258 |
+
<td>57.0</td>
|
| 259 |
+
<td>70.5</td>
|
| 260 |
+
<td>-</td>
|
| 261 |
+
<td>-</td>
|
| 262 |
+
<td>75.4</td>
|
| 263 |
+
<td>55.9</td>
|
| 264 |
+
</tr>
|
| 265 |
+
<tr>
|
| 266 |
+
<td>Claude4 opus (thinking)</td>
|
| 267 |
+
<td>-</td>
|
| 268 |
+
<td>79.8</td>
|
| 269 |
+
<td>66.1</td>
|
| 270 |
+
<td>25.2</td>
|
| 271 |
+
<td>49.3</td>
|
| 272 |
+
<td>47.2</td>
|
| 273 |
+
<td>59.9</td>
|
| 274 |
+
<td>75.5</td>
|
| 275 |
+
<td>-</td>
|
| 276 |
+
<td>-</td>
|
| 277 |
+
<td>79.6</td>
|
| 278 |
+
<td>56.6</td>
|
| 279 |
+
</tr>
|
| 280 |
+
<tr>
|
| 281 |
+
<td>Gemini 2.5 Flash (thinking)</td>
|
| 282 |
+
<td>-</td>
|
| 283 |
+
<td>73.2</td>
|
| 284 |
+
<td>57.3</td>
|
| 285 |
+
<td>20.1</td>
|
| 286 |
+
<td>57.1</td>
|
| 287 |
+
<td>61.1</td>
|
| 288 |
+
<td>65.2</td>
|
| 289 |
+
<td>72.0</td>
|
| 290 |
+
<td>-</td>
|
| 291 |
+
<td>-</td>
|
| 292 |
+
<td>82.8</td>
|
| 293 |
+
<td>61.9</td>
|
| 294 |
+
</tr>
|
| 295 |
+
<tr>
|
| 296 |
+
<td>Gemini 2.5 Pro</td>
|
| 297 |
+
<td>-</td>
|
| 298 |
+
<td>81.7</td>
|
| 299 |
+
<td>73.3</td>
|
| 300 |
+
<td>30.8</td>
|
| 301 |
+
<td>56.3</td>
|
| 302 |
+
<td>66.8</td>
|
| 303 |
+
<td>66.8</td>
|
| 304 |
+
<td>88.0</td>
|
| 305 |
+
<td>-</td>
|
| 306 |
+
<td>-</td>
|
| 307 |
+
<td>86.4</td>
|
| 308 |
+
<td>71.8</td>
|
| 309 |
+
</tr>
|
| 310 |
+
<!-- 新增 Grok 4 -->
|
| 311 |
+
<tr>
|
| 312 |
+
<td>Grok 4</td>
|
| 313 |
+
<td>-</td>
|
| 314 |
+
<td>80.9</td>
|
| 315 |
+
<td>70.3</td>
|
| 316 |
+
<td>22.5</td>
|
| 317 |
+
<td>40.7</td>
|
| 318 |
+
<td>55.9</td>
|
| 319 |
+
<td>64.8</td>
|
| 320 |
+
<td>98.8</td>
|
| 321 |
+
<td>93.9</td>
|
| 322 |
+
<td>85.5</td>
|
| 323 |
+
<td>87.5</td>
|
| 324 |
+
<td>79.3</td>
|
| 325 |
+
</tr>
|
| 326 |
+
</tbody>
|
| 327 |
+
</table>
|
| 328 |
+
|
| 329 |
+
Note: Parts of the evaluation results are reproduced using the same settings.
|
| 330 |
+
†: Evaluation results of Gemini 2.5 Flash (thinking) may be lower than real model performance, especially on MathVision, due to insufficient instruction following ability.
|
| 331 |
+
## Deployment
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
> You can access Step3's API on https://platform.stepfun.com/ , we provide OpenAI/Anthropic-compatible API for you.
|
| 335 |
+
>
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
### Inference with Hugging Face Transformers
|
| 339 |
+
|
| 340 |
+
We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.54.0 as the development environment.We currently only support bf16 inference, and multi-patch is supported by default. This behavior is aligned with vllm and sglang.
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
```python
|
| 344 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 345 |
+
|
| 346 |
+
key_mapping = {
|
| 347 |
+
"^vision_model": "model.vision_model",
|
| 348 |
+
r"^model(?!\.(language_model|vision_model))": "model.language_model",
|
| 349 |
+
"vit_downsampler": "model.vit_downsampler",
|
| 350 |
+
"vit_downsampler2": "model.vit_downsampler2",
|
| 351 |
+
"vit_large_projector": "model.vit_large_projector",
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
model_path = "stepfun-ai/step3"
|
| 355 |
+
|
| 356 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 357 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,
|
| 358 |
+
device_map="auto", torch_dtype="auto",trust_remote_code=True,
|
| 359 |
+
key_mapping=key_mapping)
|
| 360 |
+
|
| 361 |
+
messages = [
|
| 362 |
+
{
|
| 363 |
+
"role": "user",
|
| 364 |
+
"content": [
|
| 365 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
| 366 |
+
{"type": "text", "text": "What's in this picture?"}
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
]
|
| 370 |
+
|
| 371 |
+
inputs = processor.apply_chat_template(
|
| 372 |
+
messages, add_generation_prompt=True, tokenize=True,
|
| 373 |
+
return_dict=True, return_tensors="pt"
|
| 374 |
+
).to(model.device)
|
| 375 |
+
|
| 376 |
+
generate_ids = model.generate(**inputs, max_new_tokens=32768, do_sample=False)
|
| 377 |
+
decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1] :], skip_special_tokens=True)
|
| 378 |
+
|
| 379 |
+
print(decoded)
|
| 380 |
+
|
| 381 |
+
```
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
### Inference with vLLM and SGLang
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
Our model checkpoints are stored in bf16 and block-fp8 format, you can find it on [Huggingface](https://huggingface.co/stepfun-ai/step3).
|
| 388 |
+
|
| 389 |
+
Currently, it is recommended to run Step3 on the following inference engines:
|
| 390 |
+
|
| 391 |
+
* vLLM
|
| 392 |
+
* SGLang
|
| 393 |
+
|
| 394 |
+
Deployment and Request examples for vLLM and SGLang can be found in the [Model Deployment Guide](docs/deploy_guidance.md).
|
| 395 |
+
|
| 396 |
+
## Contact Us
|
| 397 |
+
If you have any questions, please reach out at [[email protected]](mailto:[email protected]) .
|
| 398 |
+
|
| 399 |
+
## License
|
| 400 |
+
Both the code repository and the model weights are released under the [Apache License (Version 2.0)](./LICENSE).
|
| 401 |
+
|
| 402 |
+
## Citation
|
| 403 |
+
```
|
| 404 |
+
@misc{step3system,
|
| 405 |
+
title={Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding},
|
| 406 |
+
author={StepFun Team},
|
| 407 |
+
year={2025},
|
| 408 |
+
eprint={2507.19427},
|
| 409 |
+
archivePrefix={arXiv},
|
| 410 |
+
primaryClass={cs.LG},
|
| 411 |
+
url={https://arxiv.org/abs/2507.19427},
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
@misc{step3blog,
|
| 415 |
+
title={Step3: Cost-Effective Multimodal Intelligence},
|
| 416 |
+
author={StepFun Team},
|
| 417 |
+
url={https://stepfun.ai/research/step3},
|
| 418 |
+
}
|
| 419 |
+
```
|