End of training
Browse files- README.md +53 -0
- all_results.json +7 -0
- config.json +52 -0
- configuration_vae.py +57 -0
- image_processing_vae.py +117 -0
- model.safetensors +3 -0
- modeling_vae.py +239 -0
- module_layers.py +95 -0
- module_layers_attn.py +335 -0
- my_config.json +85 -0
- preprocessor_config.json +24 -0
- train_results.json +7 -0
- trainer_state.json +57 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
model-index:
|
| 7 |
+
- name: vae_test
|
| 8 |
+
results: []
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
# vae_test
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the train_file=/home/pj24002027/ku50001104/data/mutual_dataset/few_data/train.jsonl, validation_file=/home/pj24002027/ku50001104/data/mutual_dataset/few_data/test.jsonl, max_train_samples=2048, max_eval_samples=2048, use_sensor_keys=CAM_FRONT dataset.
|
| 17 |
+
|
| 18 |
+
## Model description
|
| 19 |
+
|
| 20 |
+
More information needed
|
| 21 |
+
|
| 22 |
+
## Intended uses & limitations
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Training and evaluation data
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training procedure
|
| 31 |
+
|
| 32 |
+
### Training hyperparameters
|
| 33 |
+
|
| 34 |
+
The following hyperparameters were used during training:
|
| 35 |
+
- learning_rate: 0.0002
|
| 36 |
+
- train_batch_size: 128
|
| 37 |
+
- eval_batch_size: 32
|
| 38 |
+
- seed: 42
|
| 39 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.5,0.9) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 40 |
+
- lr_scheduler_type: cosine_with_min_lr
|
| 41 |
+
- lr_scheduler_warmup_steps: 1000
|
| 42 |
+
- num_epochs: 0.1
|
| 43 |
+
|
| 44 |
+
### Training results
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
### Framework versions
|
| 49 |
+
|
| 50 |
+
- Transformers 4.51.3
|
| 51 |
+
- Pytorch 2.6.0+cu126
|
| 52 |
+
- Datasets 3.5.1
|
| 53 |
+
- Tokenizers 0.21.1
|
all_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.125,
|
| 3 |
+
"train_loss": 1.1237460374832153,
|
| 4 |
+
"train_runtime": 20.6388,
|
| 5 |
+
"train_samples_per_second": 9.923,
|
| 6 |
+
"train_steps_per_second": 0.097
|
| 7 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"VAEModel"
|
| 4 |
+
],
|
| 5 |
+
"attn_resolutions": [],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_vae.VAEConfig",
|
| 8 |
+
"AutoModel": "modeling_vae.VAEModel"
|
| 9 |
+
},
|
| 10 |
+
"channels": 128,
|
| 11 |
+
"channels_mult": [
|
| 12 |
+
1,
|
| 13 |
+
1,
|
| 14 |
+
1,
|
| 15 |
+
2,
|
| 16 |
+
2
|
| 17 |
+
],
|
| 18 |
+
"codebook_dim": 0,
|
| 19 |
+
"codebook_size": 0,
|
| 20 |
+
"decoder_type": "Simple",
|
| 21 |
+
"drop_out": 0,
|
| 22 |
+
"dropout": 0.0,
|
| 23 |
+
"encoder_type": "Simple",
|
| 24 |
+
"image_mean": [
|
| 25 |
+
0.5,
|
| 26 |
+
0.5,
|
| 27 |
+
0.5
|
| 28 |
+
],
|
| 29 |
+
"image_std": [
|
| 30 |
+
0.5,
|
| 31 |
+
0.5,
|
| 32 |
+
0.5
|
| 33 |
+
],
|
| 34 |
+
"in_channels": 3,
|
| 35 |
+
"model_type": "vae",
|
| 36 |
+
"num_res_blocks": 2,
|
| 37 |
+
"out_channels": 3,
|
| 38 |
+
"quantizer_type": "VQ",
|
| 39 |
+
"resolution": [
|
| 40 |
+
64,
|
| 41 |
+
64
|
| 42 |
+
],
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.51.3",
|
| 45 |
+
"w_commit": 0,
|
| 46 |
+
"w_dino": 0,
|
| 47 |
+
"w_kl": 1,
|
| 48 |
+
"w_l1": 0.2,
|
| 49 |
+
"w_mse": 2,
|
| 50 |
+
"w_perceptual": 0,
|
| 51 |
+
"z_channels": 64
|
| 52 |
+
}
|
configuration_vae.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from enum import Enum
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
from .module_layers import Encoder, Decoder
|
| 5 |
+
from .module_layers_attn import Encoder as AttnEncoder, Decoder as AttnDecoder
|
| 6 |
+
# from .module_quantizers import VectorQuantizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class EncoderType(Enum):
|
| 10 |
+
Simple = Encoder
|
| 11 |
+
Attn = AttnEncoder
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class DecoderType(Enum):
|
| 15 |
+
Simple = Decoder
|
| 16 |
+
Attn = AttnDecoder
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# class QuantizerType(Enum):
|
| 20 |
+
# VQ = VectorQuantizer
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class VAEConfig(PretrainedConfig):
|
| 24 |
+
model_type = "vae"
|
| 25 |
+
|
| 26 |
+
def __init__(self, **kwargs):
|
| 27 |
+
# ref ./modules/__init__.py
|
| 28 |
+
self.encoder_type = kwargs.get("encoder_type", EncoderType.Simple.name)
|
| 29 |
+
self.decoder_type = kwargs.get("decoder_type", DecoderType.Simple.name)
|
| 30 |
+
# self.quantizer_type = kwargs.get("quantizer_type", QuantizerType.VQ.name)
|
| 31 |
+
# in_ch -> channels * channels_mult -> z_channels -> codebook_dim -> z_channels -> channels * channels_mult -> out_ch
|
| 32 |
+
self.in_channels = kwargs.get("in_channels", 3)
|
| 33 |
+
self.out_channels = kwargs.get("out_channels", 3)
|
| 34 |
+
self.z_channels = kwargs.get("z_channels", 256) # embeding dim
|
| 35 |
+
self.channels = kwargs.get("channels", 128)
|
| 36 |
+
# features = [channels * mult for mult in channels_mult]
|
| 37 |
+
# res -> res // 2**(len(channels_mult)-1)
|
| 38 |
+
self.channels_mult = kwargs.get("channels_mult", [1, 1, 2, 2])
|
| 39 |
+
self.codebook_dim = kwargs.get("codebook_dim", 8)
|
| 40 |
+
self.codebook_size = kwargs.get("codebook_size", 1024)
|
| 41 |
+
# if res = 128 and ch_mult = [1, 1, 2, 2], select any from [128/1, 128/2, 128/2**2, 128/2**3]
|
| 42 |
+
# in taming-transformers use attn_resolutions = [res/2**(len(ch_mult)-1)]
|
| 43 |
+
self.attn_resolutions = kwargs.get("attn_resolutions", [])
|
| 44 |
+
self.num_res_blocks = kwargs.get("num_res_blocks", 2)
|
| 45 |
+
self.resolution = kwargs.get("resolution", [64, 64])
|
| 46 |
+
self.dropout = kwargs.get("dropout", 0.)
|
| 47 |
+
# imagenet mean [0.1616, 0.1646, 0.1618], std [0.2206, 0.2233, 0.2214]
|
| 48 |
+
# nusc mean [0.3814, 0.3861, 0.3778], std [0.2219, 0.2188, 0.2248]
|
| 49 |
+
self.image_mean = kwargs.get('image_mean', [0.1616, 0.1646, 0.1618])
|
| 50 |
+
self.image_std = kwargs.get("image_std", [0.2206, 0.2233, 0.2214])
|
| 51 |
+
self.w_mse = kwargs.get("w_mse", 2)
|
| 52 |
+
self.w_l1 = kwargs.get("w_l1", 0.2)
|
| 53 |
+
self.w_perceptual = kwargs.get("w_perceptual", 0.1)
|
| 54 |
+
self.w_commit = kwargs.get("w_commit", 1)
|
| 55 |
+
self.w_dino = kwargs.get("w_dino", 0.1)
|
| 56 |
+
self.w_kl = kwargs.get("w_kl", 0.1)
|
| 57 |
+
super().__init__(**kwargs)
|
image_processing_vae.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Union, Tuple
|
| 2 |
+
import PIL
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision.transforms.v2 import (
|
| 5 |
+
Compose,
|
| 6 |
+
Lambda,
|
| 7 |
+
Resize,
|
| 8 |
+
Normalize,
|
| 9 |
+
InterpolationMode,
|
| 10 |
+
)
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 14 |
+
from transformers.image_utils import ChannelDimension, to_numpy_array
|
| 15 |
+
from transformers.utils import TensorType, logging
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class VAEImageProcessor(BaseImageProcessor):
|
| 22 |
+
|
| 23 |
+
model_input_names = ["pixel_values"]
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
do_resize:bool = True,
|
| 28 |
+
image_size: Tuple[int, int]=[64, 64],
|
| 29 |
+
do_rescale: bool = True,
|
| 30 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 31 |
+
do_normalize: bool = True,
|
| 32 |
+
image_mean: Optional[Union[List[float]]] = [0.5, 0.5, 0.5],
|
| 33 |
+
image_std: Optional[Union[List[float]]] = [0.5, 0.5, 0.5],
|
| 34 |
+
*args,
|
| 35 |
+
**kwargs
|
| 36 |
+
):
|
| 37 |
+
super().__init__(*args, **kwargs)
|
| 38 |
+
self.do_resize = do_resize
|
| 39 |
+
self.image_size = image_size
|
| 40 |
+
self.do_rescale = do_rescale
|
| 41 |
+
self.rescale_factor = rescale_factor
|
| 42 |
+
self.do_normalize = do_normalize
|
| 43 |
+
self.image_mean = image_mean
|
| 44 |
+
self.image_std = image_std
|
| 45 |
+
|
| 46 |
+
def preprocess(
|
| 47 |
+
self,
|
| 48 |
+
images: Union["PIL.Image.Image", np.ndarray, List["PIL.Image.Image"], List[np.ndarray]],
|
| 49 |
+
is_video: bool = False,
|
| 50 |
+
return_tensors: Optional[Union[str, TensorType]] = "pt",
|
| 51 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.LAST,
|
| 52 |
+
**kwargs
|
| 53 |
+
):
|
| 54 |
+
if isinstance(images, list):
|
| 55 |
+
images = [to_numpy_array(image) for image in images]
|
| 56 |
+
images = torch.from_numpy(np.stack(images, axis=0)).float()
|
| 57 |
+
else:
|
| 58 |
+
images = to_numpy_array(images)
|
| 59 |
+
images = torch.from_numpy(images).float()
|
| 60 |
+
|
| 61 |
+
if is_video:
|
| 62 |
+
if images.dim() == 4:
|
| 63 |
+
images = images.unsqueeze(0)
|
| 64 |
+
if input_data_format == ChannelDimension.LAST:
|
| 65 |
+
images = images.permute(0, 1, 4, 2, 3)
|
| 66 |
+
else:
|
| 67 |
+
if images.dim() == 3:
|
| 68 |
+
images = images.unsqueeze(0)
|
| 69 |
+
if input_data_format == ChannelDimension.LAST:
|
| 70 |
+
images = images.permute(0, 3, 1, 2)
|
| 71 |
+
compose_tf = Compose(
|
| 72 |
+
[
|
| 73 |
+
Resize(self.image_size, interpolation=InterpolationMode.BICUBIC) if self.do_resize else Lambda(lambda x: x),
|
| 74 |
+
Lambda(lambda x: x / 255.0) if self.do_rescale else Lambda(lambda x: x),
|
| 75 |
+
Normalize(self.image_mean, self.image_std) if self.do_normalize else Lambda(lambda x: x),
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
images = compose_tf(images)
|
| 79 |
+
|
| 80 |
+
return BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
| 81 |
+
|
| 82 |
+
def postprocess(
|
| 83 |
+
self,
|
| 84 |
+
images: "torch.Tensor",
|
| 85 |
+
is_video: bool = False,
|
| 86 |
+
return_tensors: Optional[Union[str, TensorType]] = "np",
|
| 87 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
| 88 |
+
**kwargs
|
| 89 |
+
):
|
| 90 |
+
if isinstance(images, np.ndarray):
|
| 91 |
+
images = torch.from_numpy(images).float()
|
| 92 |
+
if isinstance(images, list):
|
| 93 |
+
images = torch.stack(images, dim=0)
|
| 94 |
+
if not isinstance(images, torch.Tensor):
|
| 95 |
+
raise ValueError("images must be a torch.Tensor")
|
| 96 |
+
|
| 97 |
+
if is_video:
|
| 98 |
+
if images.dim() == 4:
|
| 99 |
+
images = images.unsqueeze(0)
|
| 100 |
+
if input_data_format == ChannelDimension.FIRST:
|
| 101 |
+
images = images.permute(0, 1, 3, 4, 2)
|
| 102 |
+
else:
|
| 103 |
+
if images.dim() == 3:
|
| 104 |
+
images = images.unsqueeze(0)
|
| 105 |
+
if input_data_format == ChannelDimension.FIRST:
|
| 106 |
+
images = images.permute(0, 2, 3, 1)
|
| 107 |
+
|
| 108 |
+
if self.do_normalize:
|
| 109 |
+
images = (images * torch.tensor(self.image_std)) + torch.tensor(self.image_mean)
|
| 110 |
+
if self.do_rescale:
|
| 111 |
+
images = torch.clamp(images, 0, 1)
|
| 112 |
+
images = (images * 255).type(torch.uint8)
|
| 113 |
+
|
| 114 |
+
if return_tensors == TensorType.NUMPY:
|
| 115 |
+
images = images.numpy()
|
| 116 |
+
|
| 117 |
+
return BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3385c46b833dccf98c5e3ceb6b4a9b174795a85374120706fa0a0c9a42f2197
|
| 3 |
+
size 31338740
|
modeling_vae.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Union, Tuple
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
from transformers.utils import logging, ModelOutput
|
| 9 |
+
|
| 10 |
+
from torchvision.models import vgg16, VGG16_Weights
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
from .configuration_vae import VAEConfig, EncoderType, DecoderType
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class VAEOutput(ModelOutput):
|
| 23 |
+
loss: Optional[torch.FloatTensor] = None
|
| 24 |
+
reconstruction: torch.FloatTensor = None
|
| 25 |
+
mse_loss: Optional[torch.FloatTensor] = None
|
| 26 |
+
l1_loss: Optional[torch.FloatTensor] = None
|
| 27 |
+
perceptual_loss: Optional[torch.FloatTensor] = None
|
| 28 |
+
dino_loss: Optional[torch.FloatTensor] = None
|
| 29 |
+
kl_loss: Optional[torch.FloatTensor] = None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Vgg16(nn.Module):
|
| 33 |
+
# ref https://github.com/dxyang/StyleTransfer/blob/master/vgg.py
|
| 34 |
+
def __init__(self, layers):
|
| 35 |
+
super().__init__()
|
| 36 |
+
features = vgg16(weights=VGG16_Weights.DEFAULT).features
|
| 37 |
+
self.to_relu_1_2 = nn.Sequential()
|
| 38 |
+
self.to_relu_2_2 = nn.Sequential()
|
| 39 |
+
self.to_relu_3_3 = nn.Sequential()
|
| 40 |
+
self.to_relu_4_3 = nn.Sequential()
|
| 41 |
+
|
| 42 |
+
for x in range(4):
|
| 43 |
+
self.to_relu_1_2.add_module(str(x), features[x])
|
| 44 |
+
for x in range(4, 9):
|
| 45 |
+
self.to_relu_2_2.add_module(str(x), features[x])
|
| 46 |
+
for x in range(9, 16):
|
| 47 |
+
self.to_relu_3_3.add_module(str(x), features[x])
|
| 48 |
+
for x in range(16, 23):
|
| 49 |
+
self.to_relu_4_3.add_module(str(x), features[x])
|
| 50 |
+
|
| 51 |
+
# don't need the gradients, just want the features
|
| 52 |
+
for param in self.parameters():
|
| 53 |
+
param.requires_grad = False
|
| 54 |
+
|
| 55 |
+
def forward(self, x):
|
| 56 |
+
h = self.to_relu_1_2(x)
|
| 57 |
+
h_relu_1_2 = h
|
| 58 |
+
h = self.to_relu_2_2(h)
|
| 59 |
+
h_relu_2_2 = h
|
| 60 |
+
h = self.to_relu_3_3(h)
|
| 61 |
+
h_relu_3_3 = h
|
| 62 |
+
h = self.to_relu_4_3(h)
|
| 63 |
+
h_relu_4_3 = h
|
| 64 |
+
out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3)
|
| 65 |
+
return out
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class PerceptualLoss(nn.Module):
|
| 69 |
+
def __init__(self, layers=(3, 8, 15, 22), unnorm_mean=None, unnorm_std=None, weights=None):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.vgg = Vgg16(layers=layers)
|
| 72 |
+
self.layers = layers
|
| 73 |
+
self.weights = weights or [1.0 / len(layers)] * len(layers)
|
| 74 |
+
|
| 75 |
+
def forward(self, x, y):
|
| 76 |
+
x_vgg = self.vgg(x)
|
| 77 |
+
y_vgg = self.vgg(y)
|
| 78 |
+
loss = 0.0
|
| 79 |
+
for x_vgg_layer, y_vgg_layer in zip(x_vgg, y_vgg):
|
| 80 |
+
loss += F.mse_loss(x_vgg_layer, y_vgg_layer)
|
| 81 |
+
return loss
|
| 82 |
+
|
| 83 |
+
class DinoLoss(nn.Module):
|
| 84 |
+
def __init__(self, patch_size, use_large=False):
|
| 85 |
+
super().__init__()
|
| 86 |
+
size = 'b' if use_large else 's'
|
| 87 |
+
dino = f'dino_vit{size}{patch_size}'
|
| 88 |
+
self.vit = torch.hub.load('facebookresearch/dino:main', dino)
|
| 89 |
+
print('use ', dino)
|
| 90 |
+
self.vit.eval()
|
| 91 |
+
for param in self.vit.parameters():
|
| 92 |
+
param.requires_grad = False
|
| 93 |
+
|
| 94 |
+
def forward(self, gt, embed):
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
dino_features = self.vit.prepare_tokens(gt)
|
| 97 |
+
for blk in self.vit.blocks:
|
| 98 |
+
dino_features = blk(dino_features)
|
| 99 |
+
dino_features = self.vit.norm(dino_features)
|
| 100 |
+
dino_features = dino_features[:, 1:]
|
| 101 |
+
embed_features = rearrange(embed, 'b c h w -> b (h w) c').contiguous()
|
| 102 |
+
dtype = embed.dtype
|
| 103 |
+
dino_loss = 1 - F.cosine_similarity(dino_features.to(torch.float32), embed_features.to(torch.float32), dim=2)
|
| 104 |
+
dino_loss = dino_loss.mean()
|
| 105 |
+
dino_loss = dino_loss.to(dtype)
|
| 106 |
+
return dino_loss
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class VAEModel(PreTrainedModel):
|
| 110 |
+
config_class = VAEConfig
|
| 111 |
+
main_input_name = "s0_img"
|
| 112 |
+
|
| 113 |
+
def __init__(self, config: VAEConfig):
|
| 114 |
+
super().__init__(config)
|
| 115 |
+
dict_config = config.to_dict()
|
| 116 |
+
self.encoder = EncoderType[config.encoder_type].value(**dict_config)
|
| 117 |
+
enc_out_dim = self.config.z_channels * (self.config.resolution[0] // (2 ** (len(self.config.channels_mult) - 1))) ** 2
|
| 118 |
+
latent_dim = 64
|
| 119 |
+
self.cond_mlp = nn.Sequential(
|
| 120 |
+
nn.Linear(enc_out_dim * 2, config.z_channels),
|
| 121 |
+
nn.ReLU(),
|
| 122 |
+
nn.Linear(config.z_channels, config.z_channels),
|
| 123 |
+
nn.ReLU(),
|
| 124 |
+
nn.Linear(config.z_channels, latent_dim * 2),
|
| 125 |
+
)
|
| 126 |
+
self.in_mlp = nn.Sequential(
|
| 127 |
+
nn.Linear(enc_out_dim, config.z_channels),
|
| 128 |
+
nn.ReLU(),
|
| 129 |
+
nn.Linear(config.z_channels, config.z_channels),
|
| 130 |
+
nn.ReLU(),
|
| 131 |
+
nn.Linear(config.z_channels, latent_dim * 2),
|
| 132 |
+
)
|
| 133 |
+
self.cond_mlp_out = nn.Sequential(
|
| 134 |
+
nn.Linear(latent_dim + enc_out_dim, config.z_channels),
|
| 135 |
+
nn.ReLU(),
|
| 136 |
+
nn.Linear(config.z_channels, config.z_channels),
|
| 137 |
+
nn.ReLU(),
|
| 138 |
+
nn.Linear(config.z_channels, enc_out_dim),
|
| 139 |
+
)
|
| 140 |
+
self.out_mlp = nn.Sequential(
|
| 141 |
+
nn.Linear(latent_dim, config.z_channels),
|
| 142 |
+
nn.ReLU(),
|
| 143 |
+
nn.Linear(config.z_channels, config.z_channels),
|
| 144 |
+
nn.ReLU(),
|
| 145 |
+
nn.Linear(config.z_channels, enc_out_dim),
|
| 146 |
+
)
|
| 147 |
+
self.decoder = DecoderType[config.decoder_type].value(**dict_config)
|
| 148 |
+
if config.w_perceptual > 0:
|
| 149 |
+
self.perceptual_loss = PerceptualLoss(
|
| 150 |
+
unnorm_mean=config.image_mean,
|
| 151 |
+
unnorm_std=config.image_std
|
| 152 |
+
)
|
| 153 |
+
if config.w_dino > 0:
|
| 154 |
+
assert config.z_channels in [384, 768]
|
| 155 |
+
patch_size = 2 ** (len(config.channels_mult) - 1)
|
| 156 |
+
self.dino_loss = DinoLoss(patch_size=patch_size)
|
| 157 |
+
self.log_state = {
|
| 158 |
+
"loss": None,
|
| 159 |
+
"mse_loss": None,
|
| 160 |
+
"l1_loss": None,
|
| 161 |
+
"perceptual_loss": None,
|
| 162 |
+
"dino_loss": None,
|
| 163 |
+
"gt": None,
|
| 164 |
+
"recon": None,
|
| 165 |
+
}
|
| 166 |
+
self.post_init()
|
| 167 |
+
|
| 168 |
+
def encode(self, s0_img: Tensor, s1_img: Tensor, a0: Tensor) -> tuple[Tensor, Tensor, Tensor, Tensor]:
|
| 169 |
+
# s0 = self.encoder(s0_img).reshape(s0_img.shape[0], -1)
|
| 170 |
+
s0 = None
|
| 171 |
+
s1 = self.encoder(s1_img).reshape(s1_img.shape[0], -1)
|
| 172 |
+
# s1_mean_var = self.cond_mlp(torch.cat([s0, s1], dim=1))
|
| 173 |
+
s1_mean_var = self.in_mlp(s1)
|
| 174 |
+
s1_mean, s1_logvar = s1_mean_var.chunk(2, dim=1)
|
| 175 |
+
s1_stddev = torch.exp(s1_logvar * 0.5)
|
| 176 |
+
s1_latent = s1_mean + s1_stddev * torch.randn_like(s1_mean)
|
| 177 |
+
return s1_latent, s0, s1_mean, s1_logvar
|
| 178 |
+
|
| 179 |
+
def decode(self, s1_latent: Tensor, s0: Tensor) -> Tensor:
|
| 180 |
+
quant_h = int(self.config.resolution[0] / (2 ** (len(self.config.channels_mult) - 1)))
|
| 181 |
+
quant_w = int(self.config.resolution[1] / (2 ** (len(self.config.channels_mult) - 1)))
|
| 182 |
+
# s1_latent = self.cond_mlp_out(torch.cat([s1_latent, s0], dim=1)).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
|
| 183 |
+
s1_latent = self.out_mlp(s1_latent).reshape(s1_latent.shape[0], self.config.z_channels, quant_h, quant_w)
|
| 184 |
+
return self.decoder(s1_latent)
|
| 185 |
+
|
| 186 |
+
def forward(self,
|
| 187 |
+
s0_img: Tensor,
|
| 188 |
+
s1_img: Tensor,
|
| 189 |
+
action: Tensor,
|
| 190 |
+
return_loss: bool = True,
|
| 191 |
+
return_dict: Optional[bool] = None,
|
| 192 |
+
) -> Union[Tuple, VAEOutput]:
|
| 193 |
+
return_dict = return_dict if return_dict is not None else False
|
| 194 |
+
s1_latent, s0, s1_mean, s1_logvar = self.encode(s0_img, s1_img, action)
|
| 195 |
+
recon = self.decode(s1_latent, s0)
|
| 196 |
+
|
| 197 |
+
loss = None
|
| 198 |
+
if return_loss:
|
| 199 |
+
# recon loss
|
| 200 |
+
mse_loss = F.mse_loss(recon, s1_img)
|
| 201 |
+
l1_loss = F.l1_loss(recon, s1_img)
|
| 202 |
+
if self.config.w_perceptual > 0:
|
| 203 |
+
perceptual_loss = self.perceptual_loss(recon, s1_img)
|
| 204 |
+
else:
|
| 205 |
+
perceptual_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
|
| 206 |
+
if self.config.w_dino > 0:
|
| 207 |
+
dino_loss = self.dino_loss(s1_img, None)
|
| 208 |
+
else:
|
| 209 |
+
dino_loss = torch.zeros_like(mse_loss).to(mse_loss.device)
|
| 210 |
+
# kl loss
|
| 211 |
+
kl_loss = torch.mean(-0.5 * torch.sum(1 + s1_logvar - s1_mean**2 - s1_logvar.exp(), dim=1))
|
| 212 |
+
|
| 213 |
+
loss = self.config.w_mse * mse_loss + \
|
| 214 |
+
self.config.w_l1 * l1_loss + \
|
| 215 |
+
self.config.w_perceptual * perceptual_loss + \
|
| 216 |
+
self.config.w_dino * dino_loss + \
|
| 217 |
+
self.config.w_kl * kl_loss
|
| 218 |
+
if not return_dict:
|
| 219 |
+
self.log_state["loss"] = loss.item()
|
| 220 |
+
self.log_state["mse_loss"] = mse_loss.item()
|
| 221 |
+
self.log_state["l1_loss"] = l1_loss.item()
|
| 222 |
+
self.log_state["perceptual_loss"] = perceptual_loss.item()
|
| 223 |
+
self.log_state["dino_loss"] = dino_loss.item()
|
| 224 |
+
self.log_state["kl_loss"] = kl_loss.item()
|
| 225 |
+
self.log_state["gt"] = s0_img.clone().detach().cpu()[:4].to(torch.float32)
|
| 226 |
+
self.log_state["recon"] = recon.clone().detach().cpu()[:4].to(torch.float32)
|
| 227 |
+
return ((loss,) + (recon,)) if loss is not None else recon
|
| 228 |
+
return VAEOutput(
|
| 229 |
+
loss=loss,
|
| 230 |
+
reconstruction=recon,
|
| 231 |
+
mse_loss=mse_loss,
|
| 232 |
+
l1_loss=l1_loss,
|
| 233 |
+
perceptual_loss=perceptual_loss,
|
| 234 |
+
dino_loss=dino_loss,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
def get_last_layer(self):
|
| 238 |
+
raise NotImplementedError
|
| 239 |
+
|
module_layers.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch import Tensor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class DoubleConv(nn.Module):
|
| 7 |
+
def __init__(self, in_channels: int, out_channels: int, mid_channels: int = None):
|
| 8 |
+
super().__init__()
|
| 9 |
+
if mid_channels is None:
|
| 10 |
+
mid_channels = out_channels
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
|
| 13 |
+
nn.BatchNorm2d(mid_channels),
|
| 14 |
+
nn.ReLU(inplace=True),
|
| 15 |
+
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
|
| 16 |
+
nn.BatchNorm2d(out_channels),
|
| 17 |
+
nn.ReLU(inplace=True)
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 21 |
+
return self.conv(x)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Down(nn.Module):
|
| 25 |
+
def __init__(self, in_channels: int, out_channels: int):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.maxpool_conv = nn.Sequential(
|
| 28 |
+
nn.MaxPool2d(2),
|
| 29 |
+
DoubleConv(in_channels, out_channels)
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 33 |
+
return self.maxpool_conv(x)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class Up(nn.Module):
|
| 37 |
+
def __init__(self, in_channels: int, out_channels: int, bilinear: bool = False):
|
| 38 |
+
super().__init__()
|
| 39 |
+
if bilinear:
|
| 40 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
| 41 |
+
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
| 42 |
+
else:
|
| 43 |
+
self.up = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
|
| 44 |
+
self.conv = DoubleConv(in_channels, out_channels)
|
| 45 |
+
|
| 46 |
+
def forward(self, x):
|
| 47 |
+
x = self.up(x)
|
| 48 |
+
return self.conv(x)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class Encoder(nn.Module):
|
| 52 |
+
def __init__(self, z_channels: int, in_channels: int, channels: int, channels_mult: list[int], **ignore_kwargs):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.encoder = nn.ModuleList()
|
| 55 |
+
num_resolutions = len(channels_mult)
|
| 56 |
+
in_ch_mult = (1,) + tuple(channels_mult)
|
| 57 |
+
|
| 58 |
+
self.encoder.append(DoubleConv(in_channels, channels))
|
| 59 |
+
for i_level in range(num_resolutions):
|
| 60 |
+
block_in = channels * in_ch_mult[i_level]
|
| 61 |
+
block_out = channels * channels_mult[i_level]
|
| 62 |
+
if i_level != num_resolutions - 1:
|
| 63 |
+
self.encoder.append(Down(block_in, block_out))
|
| 64 |
+
else:
|
| 65 |
+
self.encoder.append(DoubleConv(block_in, block_out))
|
| 66 |
+
block_in = block_out
|
| 67 |
+
self.encoder.append(nn.Conv2d(block_in, z_channels, kernel_size=(1, 1)))
|
| 68 |
+
|
| 69 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 70 |
+
for layer in self.encoder:
|
| 71 |
+
x = layer(x)
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class Decoder(nn.Module):
|
| 76 |
+
def __init__(self, z_channels: int, out_channels: int, channels: int, channels_mult: list[int], **ignore_kwargs):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.decoder = nn.ModuleList()
|
| 79 |
+
num_resolutions = len(channels_mult)
|
| 80 |
+
|
| 81 |
+
block_in = channels*channels_mult[num_resolutions-1]
|
| 82 |
+
self.decoder.append(nn.Conv2d(z_channels, block_in, kernel_size=(1, 1)))
|
| 83 |
+
for i_level in reversed(range(num_resolutions)):
|
| 84 |
+
block_out = channels * channels_mult[i_level]
|
| 85 |
+
if i_level != 0:
|
| 86 |
+
self.decoder.append(Up(block_in, block_out))
|
| 87 |
+
else:
|
| 88 |
+
self.decoder.append(DoubleConv(block_in, block_out))
|
| 89 |
+
block_in = block_out
|
| 90 |
+
self.final_conv = nn.Conv2d(block_in, out_channels, kernel_size=1)
|
| 91 |
+
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
for layer in self.decoder:
|
| 94 |
+
x = layer(x)
|
| 95 |
+
return self.final_conv(x)
|
module_layers_attn.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
# Ref [https://github.com/CompVis/taming-transformers/blob/master/taming/modules/diffusionmodules/model.py]
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def nonlinearity(x):
|
| 9 |
+
# swish
|
| 10 |
+
return x*torch.sigmoid(x)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def Normalize(in_channels):
|
| 14 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Upsample(nn.Module):
|
| 18 |
+
def __init__(self, in_channels, with_conv):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.with_conv = with_conv
|
| 21 |
+
if self.with_conv:
|
| 22 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 26 |
+
if self.with_conv:
|
| 27 |
+
x = self.conv(x)
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Downsample(nn.Module):
|
| 32 |
+
def __init__(self, in_channels, with_conv):
|
| 33 |
+
super().__init__()
|
| 34 |
+
self.with_conv = with_conv
|
| 35 |
+
if self.with_conv:
|
| 36 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 37 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 38 |
+
|
| 39 |
+
def forward(self, x):
|
| 40 |
+
if self.with_conv:
|
| 41 |
+
pad = (0, 1, 0, 1)
|
| 42 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 43 |
+
x = self.conv(x)
|
| 44 |
+
else:
|
| 45 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 46 |
+
return x
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class ResnetBlock(nn.Module):
|
| 50 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 51 |
+
dropout, temb_channels=512):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.in_channels = in_channels
|
| 54 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 55 |
+
self.out_channels = out_channels
|
| 56 |
+
self.use_conv_shortcut = conv_shortcut
|
| 57 |
+
|
| 58 |
+
self.norm1 = Normalize(in_channels)
|
| 59 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 60 |
+
if temb_channels > 0:
|
| 61 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
| 62 |
+
self.norm2 = Normalize(out_channels)
|
| 63 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 64 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 65 |
+
if self.in_channels != self.out_channels:
|
| 66 |
+
if self.use_conv_shortcut:
|
| 67 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 68 |
+
else:
|
| 69 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 70 |
+
|
| 71 |
+
def forward(self, x, temb):
|
| 72 |
+
h = x
|
| 73 |
+
h = self.norm1(h)
|
| 74 |
+
h = nonlinearity(h)
|
| 75 |
+
h = self.conv1(h)
|
| 76 |
+
|
| 77 |
+
if temb is not None:
|
| 78 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 79 |
+
|
| 80 |
+
h = self.norm2(h)
|
| 81 |
+
h = nonlinearity(h)
|
| 82 |
+
h = self.dropout(h)
|
| 83 |
+
h = self.conv2(h)
|
| 84 |
+
|
| 85 |
+
if self.in_channels != self.out_channels:
|
| 86 |
+
if self.use_conv_shortcut:
|
| 87 |
+
x = self.conv_shortcut(x)
|
| 88 |
+
else:
|
| 89 |
+
x = self.nin_shortcut(x)
|
| 90 |
+
|
| 91 |
+
return x + h
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class AttnBlock(nn.Module):
|
| 95 |
+
def __init__(self, in_channels):
|
| 96 |
+
super().__init__()
|
| 97 |
+
|
| 98 |
+
self.norm = Normalize(in_channels)
|
| 99 |
+
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 100 |
+
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 101 |
+
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 102 |
+
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 103 |
+
|
| 104 |
+
def forward(self, x):
|
| 105 |
+
h_ = x
|
| 106 |
+
h_ = self.norm(h_)
|
| 107 |
+
q = self.q(h_)
|
| 108 |
+
k = self.k(h_)
|
| 109 |
+
v = self.v(h_)
|
| 110 |
+
|
| 111 |
+
# compute attention
|
| 112 |
+
b,c,h,w = q.shape
|
| 113 |
+
q = q.reshape(b,c,h*w)
|
| 114 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 115 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 116 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 117 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 118 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 119 |
+
|
| 120 |
+
# attend to values
|
| 121 |
+
v = v.reshape(b,c,h*w)
|
| 122 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 123 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 124 |
+
h_ = h_.reshape(b,c,h,w)
|
| 125 |
+
|
| 126 |
+
h_ = self.proj_out(h_)
|
| 127 |
+
|
| 128 |
+
return x + h_
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class Encoder(nn.Module):
|
| 132 |
+
def __init__(self,
|
| 133 |
+
in_channels: int,
|
| 134 |
+
channels: int,
|
| 135 |
+
channels_mult: list[int],
|
| 136 |
+
num_res_blocks: int,
|
| 137 |
+
attn_resolutions: int,
|
| 138 |
+
dropout: float,
|
| 139 |
+
resolution: list[int],
|
| 140 |
+
z_channels: int,
|
| 141 |
+
**ignore_kwargs):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.ch = channels
|
| 144 |
+
self.temb_ch = 0
|
| 145 |
+
self.num_resolutions = len(channels_mult)
|
| 146 |
+
self.num_res_blocks = num_res_blocks
|
| 147 |
+
self.resolution = resolution
|
| 148 |
+
self.in_channels = in_channels
|
| 149 |
+
|
| 150 |
+
# downsampling
|
| 151 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 152 |
+
self.ch,
|
| 153 |
+
kernel_size=3,
|
| 154 |
+
stride=1,
|
| 155 |
+
padding=1)
|
| 156 |
+
|
| 157 |
+
curr_res = resolution if isinstance(resolution, int) else resolution[0]
|
| 158 |
+
in_ch_mult = (1,)+tuple(channels_mult)
|
| 159 |
+
self.down = nn.ModuleList()
|
| 160 |
+
for i_level in range(self.num_resolutions):
|
| 161 |
+
block = nn.ModuleList()
|
| 162 |
+
attn = nn.ModuleList()
|
| 163 |
+
block_in = channels*in_ch_mult[i_level]
|
| 164 |
+
block_out = channels*channels_mult[i_level]
|
| 165 |
+
for i_block in range(self.num_res_blocks):
|
| 166 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 167 |
+
out_channels=block_out,
|
| 168 |
+
temb_channels=self.temb_ch,
|
| 169 |
+
dropout=dropout))
|
| 170 |
+
block_in = block_out
|
| 171 |
+
if curr_res in attn_resolutions:
|
| 172 |
+
attn.append(AttnBlock(block_in))
|
| 173 |
+
down = nn.Module()
|
| 174 |
+
down.block = block
|
| 175 |
+
down.attn = attn
|
| 176 |
+
if i_level != self.num_resolutions-1:
|
| 177 |
+
down.downsample = Downsample(block_in, True)
|
| 178 |
+
curr_res = curr_res // 2
|
| 179 |
+
self.down.append(down)
|
| 180 |
+
|
| 181 |
+
# middle
|
| 182 |
+
self.mid = nn.Module()
|
| 183 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 184 |
+
out_channels=block_in,
|
| 185 |
+
temb_channels=self.temb_ch,
|
| 186 |
+
dropout=dropout)
|
| 187 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 188 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 189 |
+
out_channels=block_in,
|
| 190 |
+
temb_channels=self.temb_ch,
|
| 191 |
+
dropout=dropout)
|
| 192 |
+
|
| 193 |
+
# end
|
| 194 |
+
self.norm_out = Normalize(block_in)
|
| 195 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 196 |
+
z_channels,
|
| 197 |
+
kernel_size=3,
|
| 198 |
+
stride=1,
|
| 199 |
+
padding=1)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def forward(self, x):
|
| 203 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
| 204 |
+
|
| 205 |
+
# timestep embedding
|
| 206 |
+
temb = None
|
| 207 |
+
|
| 208 |
+
# downsampling
|
| 209 |
+
hs = [self.conv_in(x)]
|
| 210 |
+
for i_level in range(self.num_resolutions):
|
| 211 |
+
for i_block in range(self.num_res_blocks):
|
| 212 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 213 |
+
if len(self.down[i_level].attn) > 0:
|
| 214 |
+
h = self.down[i_level].attn[i_block](h)
|
| 215 |
+
hs.append(h)
|
| 216 |
+
if i_level != self.num_resolutions-1:
|
| 217 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 218 |
+
|
| 219 |
+
# middle
|
| 220 |
+
h = hs[-1]
|
| 221 |
+
h = self.mid.block_1(h, temb)
|
| 222 |
+
h = self.mid.attn_1(h)
|
| 223 |
+
h = self.mid.block_2(h, temb)
|
| 224 |
+
|
| 225 |
+
# end
|
| 226 |
+
h = self.norm_out(h)
|
| 227 |
+
h = nonlinearity(h)
|
| 228 |
+
h = self.conv_out(h)
|
| 229 |
+
return h
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class Decoder(nn.Module):
|
| 233 |
+
def __init__(self,
|
| 234 |
+
out_channels:int,
|
| 235 |
+
channels: int,
|
| 236 |
+
channels_mult: list[int],
|
| 237 |
+
num_res_blocks: int,
|
| 238 |
+
attn_resolutions: list[int],
|
| 239 |
+
dropout: float,
|
| 240 |
+
resolution: list[int],
|
| 241 |
+
z_channels: int,
|
| 242 |
+
**ignorekwargs):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.ch = channels
|
| 245 |
+
self.temb_ch = 0
|
| 246 |
+
self.num_resolutions = len(channels_mult)
|
| 247 |
+
self.num_res_blocks = num_res_blocks
|
| 248 |
+
self.resolution = resolution
|
| 249 |
+
|
| 250 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 251 |
+
in_ch_mult = (1,)+tuple(channels_mult)
|
| 252 |
+
block_in = channels*channels_mult[self.num_resolutions-1]
|
| 253 |
+
curr_res = resolution if isinstance(resolution, int) else resolution[0]
|
| 254 |
+
curr_res = curr_res // 2**(self.num_resolutions-1)
|
| 255 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 256 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
| 257 |
+
# self.z_shape, np.prod(self.z_shape)))
|
| 258 |
+
|
| 259 |
+
# z to block_in
|
| 260 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 261 |
+
block_in,
|
| 262 |
+
kernel_size=3,
|
| 263 |
+
stride=1,
|
| 264 |
+
padding=1)
|
| 265 |
+
|
| 266 |
+
# middle
|
| 267 |
+
self.mid = nn.Module()
|
| 268 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 269 |
+
out_channels=block_in,
|
| 270 |
+
temb_channels=self.temb_ch,
|
| 271 |
+
dropout=dropout)
|
| 272 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 273 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 274 |
+
out_channels=block_in,
|
| 275 |
+
temb_channels=self.temb_ch,
|
| 276 |
+
dropout=dropout)
|
| 277 |
+
|
| 278 |
+
# upsampling
|
| 279 |
+
self.up = nn.ModuleList()
|
| 280 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 281 |
+
block = nn.ModuleList()
|
| 282 |
+
attn = nn.ModuleList()
|
| 283 |
+
block_out = channels*channels_mult[i_level]
|
| 284 |
+
for i_block in range(self.num_res_blocks+1):
|
| 285 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 286 |
+
out_channels=block_out,
|
| 287 |
+
temb_channels=self.temb_ch,
|
| 288 |
+
dropout=dropout))
|
| 289 |
+
block_in = block_out
|
| 290 |
+
if curr_res in attn_resolutions:
|
| 291 |
+
attn.append(AttnBlock(block_in))
|
| 292 |
+
up = nn.Module()
|
| 293 |
+
up.block = block
|
| 294 |
+
up.attn = attn
|
| 295 |
+
if i_level != 0:
|
| 296 |
+
up.upsample = Upsample(block_in, True)
|
| 297 |
+
curr_res = curr_res * 2
|
| 298 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 299 |
+
|
| 300 |
+
# end
|
| 301 |
+
self.norm_out = Normalize(block_in)
|
| 302 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 303 |
+
out_channels,
|
| 304 |
+
kernel_size=3,
|
| 305 |
+
stride=1,
|
| 306 |
+
padding=1)
|
| 307 |
+
|
| 308 |
+
def forward(self, z):
|
| 309 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 310 |
+
self.last_z_shape = z.shape
|
| 311 |
+
|
| 312 |
+
# timestep embedding
|
| 313 |
+
temb = None
|
| 314 |
+
|
| 315 |
+
# z to block_in
|
| 316 |
+
h = self.conv_in(z)
|
| 317 |
+
|
| 318 |
+
# middle
|
| 319 |
+
h = self.mid.block_1(h, temb)
|
| 320 |
+
h = self.mid.attn_1(h)
|
| 321 |
+
h = self.mid.block_2(h, temb)
|
| 322 |
+
|
| 323 |
+
# upsampling
|
| 324 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 325 |
+
for i_block in range(self.num_res_blocks+1):
|
| 326 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 327 |
+
if len(self.up[i_level].attn) > 0:
|
| 328 |
+
h = self.up[i_level].attn[i_block](h)
|
| 329 |
+
if i_level != 0:
|
| 330 |
+
h = self.up[i_level].upsample(h)
|
| 331 |
+
|
| 332 |
+
h = self.norm_out(h)
|
| 333 |
+
h = nonlinearity(h)
|
| 334 |
+
h = self.conv_out(h)
|
| 335 |
+
return h
|
my_config.json
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"output_dir": "logs/vae_test",
|
| 3 |
+
"overwrite_output_dir": true,
|
| 4 |
+
"model_type": "vae",
|
| 5 |
+
"report_to": [
|
| 6 |
+
"wandb"
|
| 7 |
+
],
|
| 8 |
+
"wandb_project_name": "train_vae",
|
| 9 |
+
"run_name": "train_vae",
|
| 10 |
+
"num_train_epochs": 0.1,
|
| 11 |
+
"logging_strategy": "steps",
|
| 12 |
+
"logging_steps": 0.01,
|
| 13 |
+
"save_strategy": "epoch",
|
| 14 |
+
"save_steps": 1,
|
| 15 |
+
"eval_strategy": "no",
|
| 16 |
+
"eval_steps": 0.1,
|
| 17 |
+
"do_train": true,
|
| 18 |
+
"do_eval": false,
|
| 19 |
+
"resume_from_checkpoint": null,
|
| 20 |
+
"remove_unused_columns": false,
|
| 21 |
+
"per_device_train_batch_size": 128,
|
| 22 |
+
"per_device_eval_batch_size": 32,
|
| 23 |
+
"gradient_accumulation_steps": 1,
|
| 24 |
+
"max_grad_norm": 5.0,
|
| 25 |
+
"bf16": true,
|
| 26 |
+
"fp16": false,
|
| 27 |
+
"use_cpu": false,
|
| 28 |
+
"save_only_model": false,
|
| 29 |
+
"adam_beta1": 0.5,
|
| 30 |
+
"adam_beta2": 0.9,
|
| 31 |
+
"learning_rate": 0.0002,
|
| 32 |
+
"weight_decay": 0.01,
|
| 33 |
+
"warmup_steps": 1000,
|
| 34 |
+
"lr_scheduler_type": "cosine_with_min_lr",
|
| 35 |
+
"lr_scheduler_kwargs": {
|
| 36 |
+
"min_lr": 1e-05
|
| 37 |
+
},
|
| 38 |
+
"train_file": "/home/pj24002027/ku50001104/data/mutual_dataset/few_data/train.jsonl",
|
| 39 |
+
"validation_file": "/home/pj24002027/ku50001104/data/mutual_dataset/few_data/test.jsonl",
|
| 40 |
+
"max_eval_samples": 2048,
|
| 41 |
+
"max_train_samples": 2048,
|
| 42 |
+
"exp_setup": null,
|
| 43 |
+
"use_sensor_keys": "CAM_FRONT",
|
| 44 |
+
"dataloader_num_workers": 1,
|
| 45 |
+
"disable_tqdm": true,
|
| 46 |
+
"config_overrides": {
|
| 47 |
+
"encoder_type": "Simple",
|
| 48 |
+
"decoder_type": "Simple",
|
| 49 |
+
"quantizer_type": "VQ",
|
| 50 |
+
"resolution": [
|
| 51 |
+
64,
|
| 52 |
+
64
|
| 53 |
+
],
|
| 54 |
+
"z_channels": 64,
|
| 55 |
+
"codebook_dim": 0,
|
| 56 |
+
"codebook_size": 0,
|
| 57 |
+
"num_res_blocks": 2,
|
| 58 |
+
"channels": 128,
|
| 59 |
+
"channels_mult": [
|
| 60 |
+
1,
|
| 61 |
+
1,
|
| 62 |
+
1,
|
| 63 |
+
2,
|
| 64 |
+
2
|
| 65 |
+
],
|
| 66 |
+
"attn_resolutions": [],
|
| 67 |
+
"drop_out": 0,
|
| 68 |
+
"image_mean": [
|
| 69 |
+
0.5,
|
| 70 |
+
0.5,
|
| 71 |
+
0.5
|
| 72 |
+
],
|
| 73 |
+
"image_std": [
|
| 74 |
+
0.5,
|
| 75 |
+
0.5,
|
| 76 |
+
0.5
|
| 77 |
+
],
|
| 78 |
+
"w_mse": 2,
|
| 79 |
+
"w_l1": 0.2,
|
| 80 |
+
"w_perceptual": 0,
|
| 81 |
+
"w_commit": 0,
|
| 82 |
+
"w_dino": 0,
|
| 83 |
+
"w_kl": 1
|
| 84 |
+
}
|
| 85 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_vae.VAEImageProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_normalize": true,
|
| 6 |
+
"do_rescale": true,
|
| 7 |
+
"do_resize": true,
|
| 8 |
+
"image_mean": [
|
| 9 |
+
0.5,
|
| 10 |
+
0.5,
|
| 11 |
+
0.5
|
| 12 |
+
],
|
| 13 |
+
"image_processor_type": "VAEImageProcessor",
|
| 14 |
+
"image_size": [
|
| 15 |
+
64,
|
| 16 |
+
64
|
| 17 |
+
],
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.5,
|
| 20 |
+
0.5,
|
| 21 |
+
0.5
|
| 22 |
+
],
|
| 23 |
+
"rescale_factor": 0.00392156862745098
|
| 24 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.125,
|
| 3 |
+
"train_loss": 1.1237460374832153,
|
| 4 |
+
"train_runtime": 20.6388,
|
| 5 |
+
"train_samples_per_second": 9.923,
|
| 6 |
+
"train_steps_per_second": 0.097
|
| 7 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.125,
|
| 6 |
+
"eval_steps": 1,
|
| 7 |
+
"global_step": 2,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0625,
|
| 14 |
+
"grad_norm": 4.648393154144287,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 1.1228,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.125,
|
| 21 |
+
"grad_norm": 4.56954288482666,
|
| 22 |
+
"learning_rate": 2.0000000000000002e-07,
|
| 23 |
+
"loss": 1.1247,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.125,
|
| 28 |
+
"step": 2,
|
| 29 |
+
"total_flos": 147645328785408.0,
|
| 30 |
+
"train_loss": 1.1237460374832153,
|
| 31 |
+
"train_runtime": 20.6388,
|
| 32 |
+
"train_samples_per_second": 9.923,
|
| 33 |
+
"train_steps_per_second": 0.097
|
| 34 |
+
}
|
| 35 |
+
],
|
| 36 |
+
"logging_steps": 1,
|
| 37 |
+
"max_steps": 2,
|
| 38 |
+
"num_input_tokens_seen": 0,
|
| 39 |
+
"num_train_epochs": 1,
|
| 40 |
+
"save_steps": 1,
|
| 41 |
+
"stateful_callbacks": {
|
| 42 |
+
"TrainerControl": {
|
| 43 |
+
"args": {
|
| 44 |
+
"should_epoch_stop": false,
|
| 45 |
+
"should_evaluate": false,
|
| 46 |
+
"should_log": false,
|
| 47 |
+
"should_save": true,
|
| 48 |
+
"should_training_stop": true
|
| 49 |
+
},
|
| 50 |
+
"attributes": {}
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"total_flos": 147645328785408.0,
|
| 54 |
+
"train_batch_size": 128,
|
| 55 |
+
"trial_name": null,
|
| 56 |
+
"trial_params": null
|
| 57 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:494f49e8ffe42f196e661babfa0f4516d40ccf2f9a923a613986c80ce7a70477
|
| 3 |
+
size 5368
|