This is the OCR weight component of the PaddlePaddle/PaddleOCR-VL model. These weights cannot be used for other use cases. If you wish to do so, please visit the original model page!
This repository directly exposes the OCR-only weights for smoother transformers implementation of the PaddleOCR-VL model.
Last updated: 4:00 AM (IST), October 25, 2025.
The latest transformers version used as of the above date is
transformers==4.57.1and the torch version2.8.0+cu126
Quick Start with Transformers
Install the required packages
!pip install transformers torch torchvision gradio hf_xet \
huggingface_hub pillow accelerate peft \
matplotlib requests einops av sentencepiece\
transformers-stream-generator
notebook login
from huggingface_hub import notebook_login, HfApi
notebook_login()
Run [app.py]
import os
import sys
from threading import Thread
from typing import Iterable
import gradio as gr
import torch
from PIL import Image
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
# --- Theme and CSS Setup ---
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
# --- Model Configuration and Loading ---
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load PaddleOCR
MODEL_ID_P = "strangervisionhf/paddle.ocr_path_expose" # -> Original model: https://huggingface.co/PaddlePaddle/PaddleOCR-VL
processor = AutoProcessor.from_pretrained(MODEL_ID_P, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID_P,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to(device).eval()
# --- Generation Function ---
def generate_image(text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""Generate responses for image input using the PaddleOCR model."""
if image is None:
yield "Please upload an image.", "Please upload an image."
return
images = [image.convert("RGB")]
# PaddleOCR has a specific message format
messages = [
{"role": "user", "content": text}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"do_sample": True
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "").replace("<end_of_utterance>", "")
yield buffer, buffer
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Paddle OCR Only**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=320)
image_submit = gr.Button("Submit", variant="primary")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
with gr.Accordion("[Result.md]", open=False):
formatted_output = gr.Markdown(label="Formatted Result")
gr.Markdown("Note: Currently, PaddleOCR VL only supports OCR inference. Structured OCR document parsing transformer inference is coming soon. [Report โ Bug/Issue](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR3/discussions/1)")
image_submit.click(
fn=generate_image,
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[raw_output, formatted_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
- Downloads last month
- 80
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support