--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MyBERT results: [] --- # MyBERT This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4607 - Accuracy: 0.8597 - F1: 0.8596 - Precision: 0.8602 - Recall: 0.8597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5404 | 1.0 | 2573 | 0.5438 | 0.8028 | 0.8032 | 0.8142 | 0.8028 | | 0.322 | 2.0 | 5146 | 0.4764 | 0.8391 | 0.8391 | 0.8440 | 0.8391 | | 0.2292 | 3.0 | 7719 | 0.4607 | 0.8597 | 0.8596 | 0.8602 | 0.8597 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4