Model Card for Model ID

Model Details

Model Description

Install

pip install peft transformers bitsandbytes

Run by transformers

from transformers import TextStreamer, AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2",)
mis_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", load_in_4bit = True)
mis_model = PeftModel.from_pretrained(mis_model, "svjack/DPO_Bactrian_X_ZH_RJ_EN_ORPO_Mistral7B_v2_inst_lora_small")
mis_model = mis_model.eval()

streamer = TextStreamer(tokenizer)

def mistral_hf_predict(messages, mis_model = mis_model,
    tokenizer = tokenizer, streamer = streamer,
    do_sample = True,
    top_p = 0.95,
    top_k = 40,
    max_new_tokens = 512,
    max_input_length = 3500,
    temperature = 0.9,
    repetition_penalty = 1.0,
    device = "cuda"):

    encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
    model_inputs = encodeds.to(device)

    generated_ids = mis_model.generate(model_inputs, max_new_tokens=max_new_tokens,
                                do_sample=do_sample,
                                  streamer = streamer,
                                  top_p = top_p,
                                  top_k = top_k,
                                  temperature = temperature,
                                  repetition_penalty = repetition_penalty,
                                  )
    out = tokenizer.batch_decode(generated_ids)[0].split("[/INST]")[-1].replace("</s>", "").strip()
    return out

out = mistral_hf_predict([
            {
                "role": "user",
                "content": "ไธไฝฟ็”จsorted๏ผŒๅ†™ไธ€ไปฝ็ฎ€ๅ•็š„PythonๆŽ’ๅบ็จ‹ๅบ๏ผŒไฝฟ็”จmarkdown่ฟ›่กŒ่พ“ๅ‡บใ€‚"
            }
        ],
        repetition_penalty = 1.0,
        temperature = 0.01,
        max_new_tokens=1024
)
print(out)

Output

def sort_list(lst):
    for i in range(len(lst)):
        for j in range(i+1, len(lst)):
            if lst[i] > lst[j]:
                lst[i], lst[j] = lst[j], lst[i]

# ่พ“ๅ…ฅไธ€ไธชๅˆ—่กจ
lst = [5, 3, 8, 1, 6, 2, 7, 4]

# ่ฐƒ็”จsort_listๅ‡ฝๆ•ฐ่ฟ›่กŒๆŽ’ๅบ
sort_list(lst)

# ่พ“ๅ‡บๆŽ’ๅบๅŽ็š„ๅˆ—่กจ
print("ๆŽ’ๅบๅŽ็š„ๅˆ—่กจ๏ผš")
print(lst)

่พ“ๅ‡บ๏ผš

ๆŽ’ๅบๅŽ็š„ๅˆ—่กจ๏ผš
[1, 2, 3, 4, 5, 6, 7, 8]
out = mistral_hf_predict([
            {
                "role": "user",
                "content": "ไธไฝฟ็”จsorted๏ผŒๅ†™ไธ€ไปฝ็ฎ€ๅ•็š„PythonๆŽ’ๅบ็จ‹ๅบ๏ผŒไฝฟ็”จmarkdown่ฟ›่กŒ่พ“ๅ‡บใ€‚"
            },
            {   "role": "assistant",
                "content": '''
                ```python
                def sort_list(lst):
                    for i in range(len(lst)):
                        for j in range(i+1, len(lst)):
                            if lst[i] > lst[j]:
                                lst[i], lst[j] = lst[j], lst[i]

                # ่พ“ๅ…ฅไธ€ไธชๅˆ—่กจ
                lst = [5, 3, 8, 1, 6, 2, 7, 4]

                # ่ฐƒ็”จsort_listๅ‡ฝๆ•ฐ่ฟ›่กŒๆŽ’ๅบ
                sort_list(lst)

                # ่พ“ๅ‡บๆŽ’ๅบๅŽ็š„ๅˆ—่กจ
                print("ๆŽ’ๅบๅŽ็š„ๅˆ—่กจ๏ผš")
                print(lst)
                ```

                ่พ“ๅ‡บ๏ผš

                ```
                ๆŽ’ๅบๅŽ็š„ๅˆ—่กจ๏ผš
                [1, 2, 3, 4, 5, 6, 7, 8]
                ```
                '''
            },
            {
                "role": "user",
                "content": "ๅฐ†ไธŠ้ข็š„่ฏญ่จ€็ฟป่ฏ‘ๆˆC++ใ€‚"
            }
        ],
        repetition_penalty = 1.0,
        temperature = 0.01,
        max_new_tokens=1024
)
print(out)

Output

#include <iostream>
#include <algorithm>

using namespace std;

void sortList(int arr[], int n) {
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            if (arr[i] > arr[j]) {
                swap(arr[i], arr[j]);
            }
        }
    }
}

int main() {
    int arr[] = {5, 3, 8, 1, 6, 2, 7, 4};
    int n = sizeof(arr) / sizeof(arr[0]);

    sortList(arr, n);

    cout << "Sorted array: ";
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;

    return 0;
}

่พ“ๅ‡บ๏ผš

Sorted array: 1 2 3 4 5 6 7 8
  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Framework versions

  • PEFT 0.11.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for svjack/DPO_Bactrian_X_ZH_RJ_EN_ORPO_Mistral7B_v2_inst_lora_small

Adapter
(1052)
this model