Delete README.md
Browse files
README.md
DELETED
|
@@ -1,207 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: setfit
|
| 3 |
-
tags:
|
| 4 |
-
- setfit
|
| 5 |
-
- sentence-transformers
|
| 6 |
-
- text-classification
|
| 7 |
-
- generated_from_setfit_trainer
|
| 8 |
-
metrics:
|
| 9 |
-
- accuracy
|
| 10 |
-
widget:
|
| 11 |
-
- text: ' 从文中可以看出,关于无影人的描述并未出现,因此无法从文中抽取相关语段来回答这个问题。'
|
| 12 |
-
- text: ' 从文中可以找到这样一个语段:"直到某一天,迷途的冒险家发现了他们。无影人惊奇地发现这名冒险家有一个亦步亦趋的追随者,寡言且忠实。" 这段描述了无影人是如何发现自己存在的,冒险家发现了这个没有影子的族群,而无影人是其中之一。因此,答案是:冒险家发现了无影人并告诉他们存在的存在。'
|
| 13 |
-
- text: ' 从给出的叙述中,没有明确提到风雪是否有所消退的相关语段。'
|
| 14 |
-
- text: ' 从文章中,我们可以找到关于年轻人(姆)失去的信息是,他们去了璃月港务工,每月寄回钱给家人,但是看到城市繁华和便利,可能永远不会回来生活了。因此,年轻人失去了与家人和轻策山庄的常居和生活方式。'
|
| 15 |
-
- text: ' 从文章中,没有明确提到帕西法尔少爷的继承顺位或者他为什么要推进它。只有渔船老板提到人世的规矩,强调没有人做自己不喜欢的工作才能成事。'
|
| 16 |
-
pipeline_tag: text-classification
|
| 17 |
-
inference: true
|
| 18 |
-
base_model: BAAI/bge-small-zh-v1.5
|
| 19 |
-
model-index:
|
| 20 |
-
- name: SetFit with BAAI/bge-small-zh-v1.5
|
| 21 |
-
results:
|
| 22 |
-
- task:
|
| 23 |
-
type: text-classification
|
| 24 |
-
name: Text Classification
|
| 25 |
-
dataset:
|
| 26 |
-
name: Unknown
|
| 27 |
-
type: unknown
|
| 28 |
-
split: test
|
| 29 |
-
metrics:
|
| 30 |
-
- type: accuracy
|
| 31 |
-
value: 1.0
|
| 32 |
-
name: Accuracy
|
| 33 |
-
---
|
| 34 |
-
|
| 35 |
-
# SetFit with BAAI/bge-small-zh-v1.5
|
| 36 |
-
|
| 37 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 38 |
-
|
| 39 |
-
The model has been trained using an efficient few-shot learning technique that involves:
|
| 40 |
-
|
| 41 |
-
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 42 |
-
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 43 |
-
|
| 44 |
-
## Model Details
|
| 45 |
-
|
| 46 |
-
### Model Description
|
| 47 |
-
- **Model Type:** SetFit
|
| 48 |
-
- **Sentence Transformer body:** [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5)
|
| 49 |
-
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
-
- **Number of Classes:** 2 classes
|
| 52 |
-
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
-
<!-- - **Language:** Unknown -->
|
| 54 |
-
<!-- - **License:** Unknown -->
|
| 55 |
-
|
| 56 |
-
### Model Sources
|
| 57 |
-
|
| 58 |
-
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 59 |
-
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 60 |
-
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
-
|
| 62 |
-
### Model Labels
|
| 63 |
-
| Label | Examples |
|
| 64 |
-
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
-
| 0 | <ul><li>' 从文本中,没有明确提到���西法尔少爷推进继承顺位的原因。相关的语段仅描述了爱薇艾小姐引用了国王亚尔杰代伊的话,但是人们没有表达出什么感受,然后转向了下周的舞会。拉塔尔勋爵准备讲述关于高塔、巫师和玻璃球的传说,但是克里克先生打断了他。因此,没有包含"问题: 为什么帕西法尔少爷忍不住要将自己的继承顺位向前推进?"相关的语段。'</li><li>' 从文章中,我没有看到包含 "问题: 如果回到蒙德,那么什么路上的绊石只剩一个了?" 这句话的相关语段。因此,我无法提供答案。'</li><li>' 从给出的叙述中,没有明确提到失血和严寒对心智产生什么影响。'</li></ul> |
|
| 66 |
-
| 1 | <ul><li>' 从文中可以找到以下相关语段:\n\n1. "无影人中的一人说,「梦?我们的人已经很久不会做梦。」"\n2. "「梦?你们的人已经很久不会做梦。」"\n3. "「梦魇比你所想象的更狡猾。当它们发现你的所为,就会蜂拥而起,将你拖入无光之境。在那里没有影子的边界,你无法离开。」"\n\n从这些语段中可以得出,无影人是一个没有梦的人,而梦是藏有灵魂秘密的东西。梦魇是一个更狡猾的存在,如果发现无影人的行动,会将其拖入无光之境,这个地方没有影子边界,无法离开。因此,无影人的能力是无梦和无影。'</li><li>' 年轻的魔法师失去了被大贤人收为徒弟的机会。'</li><li>' 由于先前发生的事件使我们失去了前一本日志,可能无法恢复它。因此,我们最终还是没有能够打开那扇大门。尽管壁画和英戈伯特老爷期待的古代武器等等,但最终都失败了。当我们回到雪山阳面的营地时,同侪中的某人还没有回来。虽然我们希望他们顺利下山,带着补给和救兵回来,但现在我们的补给已经不足了。虽然这可能很残酷,但密室的圆形大门前的塌方不仅夺走了尼克,还夺走了我们委托尼克保管的燃料和食物。虽然我们曾经说过先勘探遗迹结构的完整性。\n\n这几天的经历可能让我变得更加冷酷了。可能是绝望的环境对人造成了影响。但是厄伯哈特少爷却让人钦佩,即使遇到了这些事情,还能保持冷静思考的能力。即使只是私生子,他也是一个能配得上一族名字的人。\n\n我们将在风雪稍微消散之后,按照厄伯哈特少爷的建议,去西南侧的遗迹地窖去。根据他的解释,这里独特的严寒可能有着很久以前留下来的东西。虽然很不可思议,但这里特殊的严寒有着保存物资的能力。\n\n问题:为什么今天决定不去勘探西南面的遗迹地窖,而是去有着闭锁的密室?\n答案:由于我们失去了前一本日志,可能无法恢复它,导致我们无法确定西南面的遗迹地窖的情况。同时,密室前有着夺走了我们补给和燃料的塌方,使我们面临着不足够补给和燃料的问题。因此,我们决定去密室中寻找帮助。'</li></ul> |
|
| 67 |
-
|
| 68 |
-
## Evaluation
|
| 69 |
-
|
| 70 |
-
### Metrics
|
| 71 |
-
| Label | Accuracy |
|
| 72 |
-
|:--------|:---------|
|
| 73 |
-
| **all** | 1.0 |
|
| 74 |
-
|
| 75 |
-
## Uses
|
| 76 |
-
|
| 77 |
-
### Direct Use for Inference
|
| 78 |
-
|
| 79 |
-
First install the SetFit library:
|
| 80 |
-
|
| 81 |
-
```bash
|
| 82 |
-
pip install setfit
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
Then you can load this model and run inference.
|
| 86 |
-
|
| 87 |
-
```python
|
| 88 |
-
from setfit import SetFitModel
|
| 89 |
-
|
| 90 |
-
# Download from the 🤗 Hub
|
| 91 |
-
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 92 |
-
# Run inference
|
| 93 |
-
preds = model(" 从给出的叙述中,没有明确提到风雪是否有所消退的相关语段。")
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
<!--
|
| 97 |
-
### Downstream Use
|
| 98 |
-
|
| 99 |
-
*List how someone could finetune this model on their own dataset.*
|
| 100 |
-
-->
|
| 101 |
-
|
| 102 |
-
<!--
|
| 103 |
-
### Out-of-Scope Use
|
| 104 |
-
|
| 105 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 106 |
-
-->
|
| 107 |
-
|
| 108 |
-
<!--
|
| 109 |
-
## Bias, Risks and Limitations
|
| 110 |
-
|
| 111 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 112 |
-
-->
|
| 113 |
-
|
| 114 |
-
<!--
|
| 115 |
-
### Recommendations
|
| 116 |
-
|
| 117 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 118 |
-
-->
|
| 119 |
-
|
| 120 |
-
## Training Details
|
| 121 |
-
|
| 122 |
-
### Training Set Metrics
|
| 123 |
-
| Training set | Min | Median | Max |
|
| 124 |
-
|:-------------|:----|:-------|:----|
|
| 125 |
-
| Word count | 2 | 7.0 | 138 |
|
| 126 |
-
|
| 127 |
-
| Label | Training Sample Count |
|
| 128 |
-
|:------|:----------------------|
|
| 129 |
-
| 0 | 65 |
|
| 130 |
-
| 1 | 65 |
|
| 131 |
-
|
| 132 |
-
### Training Hyperparameters
|
| 133 |
-
- batch_size: (16, 16)
|
| 134 |
-
- num_epochs: (1, 1)
|
| 135 |
-
- max_steps: -1
|
| 136 |
-
- sampling_strategy: oversampling
|
| 137 |
-
- body_learning_rate: (2e-05, 1e-05)
|
| 138 |
-
- head_learning_rate: 0.01
|
| 139 |
-
- loss: CosineSimilarityLoss
|
| 140 |
-
- distance_metric: cosine_distance
|
| 141 |
-
- margin: 0.25
|
| 142 |
-
- end_to_end: False
|
| 143 |
-
- use_amp: False
|
| 144 |
-
- warmup_proportion: 0.1
|
| 145 |
-
- seed: 42
|
| 146 |
-
- eval_max_steps: -1
|
| 147 |
-
- load_best_model_at_end: True
|
| 148 |
-
|
| 149 |
-
### Training Results
|
| 150 |
-
| Epoch | Step | Training Loss | Validation Loss |
|
| 151 |
-
|:-------:|:-------:|:-------------:|:---------------:|
|
| 152 |
-
| 0.0019 | 1 | 0.238 | - |
|
| 153 |
-
| 0.0931 | 50 | 0.1207 | - |
|
| 154 |
-
| 0.1862 | 100 | 0.0126 | - |
|
| 155 |
-
| 0.2793 | 150 | 0.005 | - |
|
| 156 |
-
| 0.3724 | 200 | 0.0035 | - |
|
| 157 |
-
| 0.4655 | 250 | 0.0028 | - |
|
| 158 |
-
| 0.5587 | 300 | 0.0029 | - |
|
| 159 |
-
| 0.6518 | 350 | 0.0027 | - |
|
| 160 |
-
| 0.7449 | 400 | 0.0039 | - |
|
| 161 |
-
| 0.8380 | 450 | 0.0028 | - |
|
| 162 |
-
| 0.9311 | 500 | 0.0028 | - |
|
| 163 |
-
| **1.0** | **537** | **-** | **0.0004** |
|
| 164 |
-
|
| 165 |
-
* The bold row denotes the saved checkpoint.
|
| 166 |
-
### Framework Versions
|
| 167 |
-
- Python: 3.10.12
|
| 168 |
-
- SetFit: 1.0.3
|
| 169 |
-
- Sentence Transformers: 2.4.0
|
| 170 |
-
- Transformers: 4.38.1
|
| 171 |
-
- PyTorch: 2.0.1+cu118
|
| 172 |
-
- Datasets: 2.17.1
|
| 173 |
-
- Tokenizers: 0.15.2
|
| 174 |
-
|
| 175 |
-
## Citation
|
| 176 |
-
|
| 177 |
-
### BibTeX
|
| 178 |
-
```bibtex
|
| 179 |
-
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 180 |
-
doi = {10.48550/ARXIV.2209.11055},
|
| 181 |
-
url = {https://arxiv.org/abs/2209.11055},
|
| 182 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 183 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 184 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
| 185 |
-
publisher = {arXiv},
|
| 186 |
-
year = {2022},
|
| 187 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
| 188 |
-
}
|
| 189 |
-
```
|
| 190 |
-
|
| 191 |
-
<!--
|
| 192 |
-
## Glossary
|
| 193 |
-
|
| 194 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 195 |
-
-->
|
| 196 |
-
|
| 197 |
-
<!--
|
| 198 |
-
## Model Card Authors
|
| 199 |
-
|
| 200 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 201 |
-
-->
|
| 202 |
-
|
| 203 |
-
<!--
|
| 204 |
-
## Model Card Contact
|
| 205 |
-
|
| 206 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 207 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|