takomattyy commited on
Commit
02ec4ec
·
verified ·
1 Parent(s): 1717e80

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - tl
5
+ tags:
6
+ - sentiment-analysis
7
+ - filipino
8
+ - english
9
+ - roberta
10
+ - service-reviews
11
+ license: mit
12
+ datasets:
13
+ - custom
14
+ metrics:
15
+ - accuracy
16
+ - f1
17
+ pipeline_tag: text-classification
18
+ ---
19
+
20
+ # HandyHome Sentiment Analysis
21
+
22
+ This model classifies sentiment in Filipino-English service reviews.
23
+
24
+ ## Model Details
25
+
26
+ - **Base Model**: RoBERTa
27
+ - **Task**: Sentiment Classification (3 classes)
28
+ - **Languages**: Filipino, English (mixed)
29
+ - **Classes**:
30
+ - 0: Negative
31
+ - 1: Neutral
32
+ - 2: Positive
33
+
34
+ ## Usage
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
38
+ import torch
39
+
40
+ # Load model and tokenizer
41
+ model_name = "YOUR_USERNAME/handyhome-sentiment-roberta"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
+
45
+ # Predict sentiment
46
+ text = "Magaling yung service, very professional!"
47
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
48
+
49
+ with torch.no_grad():
50
+ outputs = model(**inputs)
51
+ predictions = torch.softmax(outputs.logits, dim=1)
52
+ predicted_class = torch.argmax(predictions, dim=1).item()
53
+
54
+ labels = ["negative", "neutral", "positive"]
55
+ print(f"Sentiment: {labels[predicted_class]}")
56
+ ```
57
+
58
+ ## Training Data
59
+
60
+ Trained on HandyHome service reviews dataset containing Filipino-English mixed language reviews.