Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- tl
|
| 5 |
+
tags:
|
| 6 |
+
- sentiment-analysis
|
| 7 |
+
- filipino
|
| 8 |
+
- english
|
| 9 |
+
- roberta
|
| 10 |
+
- service-reviews
|
| 11 |
+
license: mit
|
| 12 |
+
datasets:
|
| 13 |
+
- custom
|
| 14 |
+
metrics:
|
| 15 |
+
- accuracy
|
| 16 |
+
- f1
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# HandyHome Sentiment Analysis
|
| 21 |
+
|
| 22 |
+
This model classifies sentiment in Filipino-English service reviews.
|
| 23 |
+
|
| 24 |
+
## Model Details
|
| 25 |
+
|
| 26 |
+
- **Base Model**: RoBERTa
|
| 27 |
+
- **Task**: Sentiment Classification (3 classes)
|
| 28 |
+
- **Languages**: Filipino, English (mixed)
|
| 29 |
+
- **Classes**:
|
| 30 |
+
- 0: Negative
|
| 31 |
+
- 1: Neutral
|
| 32 |
+
- 2: Positive
|
| 33 |
+
|
| 34 |
+
## Usage
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 38 |
+
import torch
|
| 39 |
+
|
| 40 |
+
# Load model and tokenizer
|
| 41 |
+
model_name = "YOUR_USERNAME/handyhome-sentiment-roberta"
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 43 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 44 |
+
|
| 45 |
+
# Predict sentiment
|
| 46 |
+
text = "Magaling yung service, very professional!"
|
| 47 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 48 |
+
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = model(**inputs)
|
| 51 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
| 52 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
| 53 |
+
|
| 54 |
+
labels = ["negative", "neutral", "positive"]
|
| 55 |
+
print(f"Sentiment: {labels[predicted_class]}")
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Training Data
|
| 59 |
+
|
| 60 |
+
Trained on HandyHome service reviews dataset containing Filipino-English mixed language reviews.
|