taidopurason commited on
Commit
3a22365
·
verified ·
1 Parent(s): e061730

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -176
README.md CHANGED
@@ -1,199 +1,92 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - hsb
5
+ - dsb
6
+ datasets:
7
+ - HuggingFaceFW/fineweb-2
8
+ - CohereLabs/aya_dataset
9
+ - Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered
10
+ - OpenAssistant/oasst2
11
+ - ai2-adapt-dev/flan_v2_converted
12
+ - utter-project/EuroBlocks-SFT-Synthetic-1124
13
+ base_model:
14
+ - Qwen/Qwen2.5-3B-Instruct
15
  ---
16
 
17
+ # Qwen2.5-3B-Instruct-hsb-dsb
18
 
19
+ This model is the TartuNLP submission to the **WMT25 Shared Task on Limited Resource Slavic Languages**, covering **Upper Sorbian** (hsb) and **Lower Sorbian** (dsb).
20
+ It is based on **Qwen2.5-3B-Instruct** and adapted through continued pretraining on Sorbian monolingual and parallel data, plus general instruction-tuning datasets.
21
 
22
+ The model jointly supports machine translation (MT) and question answering (QA) for both Sorbian languages, achieving the top rank in the shared task.
23
 
24
+ ⚠️ **Note:** This model is research-focused and has not been tested for general usage. Use at your own risk.
25
 
 
26
 
27
+ ## Example usage
28
+ ```
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer
30
 
31
+ model_name = "tartuNLP/Qwen2.5-3B-Instruct-hsb-dsb"
32
 
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ model_name,
35
+ torch_dtype="auto",
36
+ device_map="auto"
37
+ )
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
 
40
+ messages = [
41
+ {"role": "system", "content": "Translate the following text from German to Upper Sorbian."},
42
+ {"role": "user", "content": "Wie lange willst du noch bleiben?"}
43
+ ]
44
+ text = tokenizer.apply_chat_template(
45
+ messages,
46
+ tokenize=False,
47
+ add_generation_prompt=True
48
+ )
49
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
50
 
51
+ generated_ids = model.generate(
52
+ **model_inputs,
53
+ max_new_tokens=512
54
+ )
55
+ generated_ids = [
56
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
57
+ ]
58
 
59
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
60
+ ```
61
 
62
+ ## Shared task results
63
+ Results shared by the organizers ([source](https://github.com/TUM-NLP/llms-limited-resources2025/blob/main/results.md)).
 
64
 
 
65
 
66
+ **Upper Sorbian:**
67
+ | | DE-HSB | points | HSB-QA | points | final points |
68
+ |--------------|-----------|--------|-----------|--------|--------------|
69
+ | **TartuNLP** | 86.33 | 4 | **58.10** | 4 | 8 |
70
+ | NRC | **87.20** | 4 | 29.05 | 1 | 5 |
71
+ | SDKM | 75.73 | 2 | 55.24 | 3 | 5 |
72
+ | baseline | 13.88 | 1 | 42.86 | 2 | 3 |
73
 
 
74
 
75
+ **Lower Sorbian:**
76
+ | | DE-DSB | points | DSB-QA | points | final points |
77
+ |--------------|-----------|--------|-----------|--------|--------------|
78
+ | **TartuNLP** | 78.20 | 4 | **57.56** | 4 | 8 |
79
+ | NRC | **78.24** | 4 | 32.20 | 1 | 5 |
80
+ | SDKM | 64.34 | 2 | 51.71 | 3 | 5 |
81
+ | baseline | 12.21 | 1 | 45.85 | 2 | 3 |
82
 
 
83
 
 
84
 
85
+ ## Training details
86
+ - Total training tokens: ~1.2B
87
+ - Sequence length: 4096
88
+ - Training hardware: LUMI supercomputer (AMD MI250x GPUs)
89
+ - Training time: ~139 GPU-hours
90
 
91
+ ## Citation info
92
+ To be announced.