Upload hunyuan.py with huggingface_hub
Browse files- hunyuan.py +879 -0
hunyuan.py
ADDED
|
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
""" PyTorch HunYuan model."""
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import List, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch.utils.checkpoint
|
| 14 |
+
from torch import nn
|
| 15 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 16 |
+
|
| 17 |
+
from transformers.activations import ACT2FN
|
| 18 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 19 |
+
from transformers.modeling_attn_mask_utils import (
|
| 20 |
+
AttentionMaskConverter,
|
| 21 |
+
_prepare_4d_attention_mask,
|
| 22 |
+
_prepare_4d_causal_attention_mask,
|
| 23 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 24 |
+
)
|
| 25 |
+
from transformers.modeling_outputs import (
|
| 26 |
+
BaseModelOutputWithPast,
|
| 27 |
+
CausalLMOutputWithPast,
|
| 28 |
+
SequenceClassifierOutputWithPast
|
| 29 |
+
)
|
| 30 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 31 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
| 32 |
+
from transformers.utils import (
|
| 33 |
+
add_start_docstrings,
|
| 34 |
+
add_start_docstrings_to_model_forward,
|
| 35 |
+
is_flash_attn_2_available,
|
| 36 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 37 |
+
logging,
|
| 38 |
+
replace_return_docstrings,
|
| 39 |
+
)
|
| 40 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
| 41 |
+
from transformers.generation.utils import GenerateOutput
|
| 42 |
+
from .configuration_hunyuan import HunYuanConfig
|
| 43 |
+
from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
|
| 44 |
+
from .vit_model import NaVitForward, VitForward, Vit
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if is_flash_attn_2_available():
|
| 48 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 49 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 53 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 54 |
+
if is_torch_fx_available():
|
| 55 |
+
if not is_torch_greater_or_equal_than_1_13:
|
| 56 |
+
import torch.fx
|
| 57 |
+
|
| 58 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
_CONFIG_FOR_DOC = "HunYuanConfig"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
HUNYUAN_START_DOCSTRING = r"""
|
| 66 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 67 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 68 |
+
etc.)
|
| 69 |
+
|
| 70 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 71 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 72 |
+
and behavior.
|
| 73 |
+
|
| 74 |
+
Parameters:
|
| 75 |
+
config ([`HunYuanConfig`]):
|
| 76 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 77 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 78 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@add_start_docstrings(
|
| 83 |
+
"The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
|
| 84 |
+
HUNYUAN_START_DOCSTRING,
|
| 85 |
+
)
|
| 86 |
+
class HunYuanPreTrainedModel(PreTrainedModel):
|
| 87 |
+
config_class = HunYuanConfig
|
| 88 |
+
base_model_prefix = "model"
|
| 89 |
+
supports_gradient_checkpointing = True
|
| 90 |
+
_no_split_modules = ["HunYuanDecoderLayer"]
|
| 91 |
+
_skip_keys_device_placement = "past_key_values"
|
| 92 |
+
_supports_flash_attn_2 = True
|
| 93 |
+
_supports_sdpa = True
|
| 94 |
+
_supports_cache_class = True
|
| 95 |
+
|
| 96 |
+
def _init_weights(self, module):
|
| 97 |
+
std = self.config.initializer_range
|
| 98 |
+
if isinstance(module, nn.Linear):
|
| 99 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 100 |
+
if module.bias is not None:
|
| 101 |
+
module.bias.data.zero_()
|
| 102 |
+
elif isinstance(module, nn.Embedding):
|
| 103 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 104 |
+
if module.padding_idx is not None:
|
| 105 |
+
module.weight.data[module.padding_idx].zero_()
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
HUNYUAN_INPUTS_DOCSTRING = r"""
|
| 109 |
+
Args:
|
| 110 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 111 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 112 |
+
it.
|
| 113 |
+
|
| 114 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 115 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 116 |
+
|
| 117 |
+
[What are input IDs?](../glossary#input-ids)
|
| 118 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 119 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 120 |
+
|
| 121 |
+
- 1 for tokens that are **not masked**,
|
| 122 |
+
- 0 for tokens that are **masked**.
|
| 123 |
+
|
| 124 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 125 |
+
|
| 126 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 127 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 128 |
+
|
| 129 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 130 |
+
`past_key_values`).
|
| 131 |
+
|
| 132 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 133 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 134 |
+
information on the default strategy.
|
| 135 |
+
|
| 136 |
+
- 1 indicates the head is **not masked**,
|
| 137 |
+
- 0 indicates the head is **masked**.
|
| 138 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 139 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 140 |
+
config.n_positions - 1]`.
|
| 141 |
+
|
| 142 |
+
[What are position IDs?](../glossary#position-ids)
|
| 143 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 144 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 145 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 146 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 147 |
+
|
| 148 |
+
Two formats are allowed:
|
| 149 |
+
- a [`~cache_utils.Cache`] instance;
|
| 150 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 151 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 152 |
+
cache format.
|
| 153 |
+
|
| 154 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 155 |
+
legacy cache format will be returned.
|
| 156 |
+
|
| 157 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 158 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 159 |
+
of shape `(batch_size, sequence_length)`.
|
| 160 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 161 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 162 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 163 |
+
model's internal embedding lookup matrix.
|
| 164 |
+
use_cache (`bool`, *optional*):
|
| 165 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 166 |
+
`past_key_values`).
|
| 167 |
+
output_attentions (`bool`, *optional*):
|
| 168 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 169 |
+
tensors for more detail.
|
| 170 |
+
output_hidden_states (`bool`, *optional*):
|
| 171 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 172 |
+
more detail.
|
| 173 |
+
return_dict (`bool`, *optional*):
|
| 174 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
@add_start_docstrings(
|
| 179 |
+
"The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
|
| 180 |
+
HUNYUAN_START_DOCSTRING,
|
| 181 |
+
)
|
| 182 |
+
class HunYuanModel(HunYuanPreTrainedModel):
|
| 183 |
+
"""
|
| 184 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HunYuanDecoderLayer`]
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
config: HunYuanConfig
|
| 188 |
+
"""
|
| 189 |
+
|
| 190 |
+
def __init__(self, config: HunYuanConfig):
|
| 191 |
+
super().__init__(config)
|
| 192 |
+
self.padding_idx = config.pad_token_id
|
| 193 |
+
self.vocab_size = config.vocab_size
|
| 194 |
+
self.add_classification_head = config.add_classification_head
|
| 195 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 196 |
+
self.layers = nn.ModuleList(
|
| 197 |
+
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 198 |
+
)
|
| 199 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 200 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 201 |
+
if not config.add_classification_head:
|
| 202 |
+
self.norm = HunYuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 203 |
+
|
| 204 |
+
self.cla = config.use_cla
|
| 205 |
+
self.cla_share_factor = config.cla_share_factor
|
| 206 |
+
|
| 207 |
+
self.gradient_checkpointing = False
|
| 208 |
+
# Initialize weights and apply final processing
|
| 209 |
+
self.post_init()
|
| 210 |
+
|
| 211 |
+
def get_input_embeddings(self):
|
| 212 |
+
return self.embed_tokens
|
| 213 |
+
|
| 214 |
+
def set_input_embeddings(self, value):
|
| 215 |
+
self.embed_tokens = value
|
| 216 |
+
|
| 217 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
| 218 |
+
def forward(
|
| 219 |
+
self,
|
| 220 |
+
input_ids: torch.LongTensor = None,
|
| 221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 222 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 223 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 224 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 225 |
+
use_cache: Optional[bool] = None,
|
| 226 |
+
output_attentions: Optional[bool] = None,
|
| 227 |
+
output_hidden_states: Optional[bool] = None,
|
| 228 |
+
return_dict: Optional[bool] = None,
|
| 229 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 230 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 231 |
+
output_hidden_states = (
|
| 232 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 233 |
+
)
|
| 234 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 235 |
+
|
| 236 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 237 |
+
|
| 238 |
+
# retrieve input_ids and inputs_embeds
|
| 239 |
+
# if input_ids is not None and inputs_embeds is not None:
|
| 240 |
+
# raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 241 |
+
if input_ids is not None:
|
| 242 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 243 |
+
elif inputs_embeds is not None:
|
| 244 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 245 |
+
else:
|
| 246 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 247 |
+
|
| 248 |
+
if self.gradient_checkpointing and self.training:
|
| 249 |
+
if use_cache:
|
| 250 |
+
logger.warning_once(
|
| 251 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 252 |
+
)
|
| 253 |
+
use_cache = False
|
| 254 |
+
|
| 255 |
+
past_key_values_length = 0
|
| 256 |
+
if use_cache:
|
| 257 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 258 |
+
if use_legacy_cache:
|
| 259 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 260 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 261 |
+
|
| 262 |
+
if position_ids is None:
|
| 263 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 264 |
+
position_ids = torch.arange(
|
| 265 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 266 |
+
)
|
| 267 |
+
position_ids = position_ids.unsqueeze(0)
|
| 268 |
+
|
| 269 |
+
if inputs_embeds is None:
|
| 270 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 271 |
+
|
| 272 |
+
# Fix lora with gradient checkpointing training
|
| 273 |
+
if self.training and inputs_embeds.is_leaf:
|
| 274 |
+
inputs_embeds.requires_grad = True
|
| 275 |
+
|
| 276 |
+
if self._use_flash_attention_2:
|
| 277 |
+
# 2d mask is passed through the layers
|
| 278 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 279 |
+
elif self._use_sdpa and not output_attentions:
|
| 280 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 281 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 282 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 283 |
+
attention_mask,
|
| 284 |
+
(batch_size, seq_length),
|
| 285 |
+
inputs_embeds,
|
| 286 |
+
past_key_values_length,
|
| 287 |
+
)
|
| 288 |
+
else:
|
| 289 |
+
# 4d mask is passed through the layers
|
| 290 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 291 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# embed positions
|
| 295 |
+
hidden_states = inputs_embeds
|
| 296 |
+
|
| 297 |
+
# decoder layers
|
| 298 |
+
all_hidden_states = () if output_hidden_states else None
|
| 299 |
+
all_self_attns = () if output_attentions else None
|
| 300 |
+
next_decoder_cache = None
|
| 301 |
+
|
| 302 |
+
prev_kv_states = None
|
| 303 |
+
for layer_idx, decoder_layer in enumerate(self.layers):
|
| 304 |
+
if output_hidden_states:
|
| 305 |
+
all_hidden_states += (hidden_states,)
|
| 306 |
+
|
| 307 |
+
if self.gradient_checkpointing and self.training:
|
| 308 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 309 |
+
decoder_layer.__call__,
|
| 310 |
+
hidden_states,
|
| 311 |
+
attention_mask,
|
| 312 |
+
position_ids,
|
| 313 |
+
past_key_values,
|
| 314 |
+
output_attentions,
|
| 315 |
+
use_cache,
|
| 316 |
+
prev_kv_states,
|
| 317 |
+
)
|
| 318 |
+
else:
|
| 319 |
+
layer_outputs = decoder_layer(
|
| 320 |
+
hidden_states,
|
| 321 |
+
attention_mask=attention_mask,
|
| 322 |
+
position_ids=position_ids,
|
| 323 |
+
past_key_value=past_key_values,
|
| 324 |
+
output_attentions=output_attentions,
|
| 325 |
+
use_cache=use_cache,
|
| 326 |
+
kv_states=prev_kv_states
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
hidden_states = layer_outputs[0]
|
| 330 |
+
|
| 331 |
+
if use_cache:
|
| 332 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 333 |
+
|
| 334 |
+
if output_attentions:
|
| 335 |
+
all_self_attns += (layer_outputs[1],)
|
| 336 |
+
|
| 337 |
+
kv_states = layer_outputs[-1]
|
| 338 |
+
|
| 339 |
+
if self.cla and layer_idx % self.cla_share_factor == 0:
|
| 340 |
+
prev_kv_states = kv_states
|
| 341 |
+
if not self.add_classification_head:
|
| 342 |
+
hidden_states = self.norm(hidden_states)
|
| 343 |
+
|
| 344 |
+
# add hidden states from the last decoder layer
|
| 345 |
+
if output_hidden_states:
|
| 346 |
+
all_hidden_states += (hidden_states,)
|
| 347 |
+
|
| 348 |
+
next_cache = None
|
| 349 |
+
if use_cache:
|
| 350 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 351 |
+
if not return_dict:
|
| 352 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 353 |
+
return BaseModelOutputWithPast(
|
| 354 |
+
last_hidden_state=hidden_states,
|
| 355 |
+
past_key_values=next_cache,
|
| 356 |
+
hidden_states=all_hidden_states,
|
| 357 |
+
attentions=all_self_attns,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class HunYuanForCausalLM(HunYuanPreTrainedModel):
|
| 362 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 363 |
+
|
| 364 |
+
def __init__(self, config: HunYuanConfig):
|
| 365 |
+
super().__init__(config)
|
| 366 |
+
if config.vit_path is not None:
|
| 367 |
+
if "-tp" in config.vit_type:
|
| 368 |
+
config.vit_type = config.vit_type.replace("-tp", "")
|
| 369 |
+
self.vit_type = config.vit_type
|
| 370 |
+
if self.vit_type not in ['NaVit', 'EvaVit']:
|
| 371 |
+
if config.vit_mapping_type == 'mlp':
|
| 372 |
+
self.vit_linear_encoder = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
| 373 |
+
self.vit = Vit(config)
|
| 374 |
+
else:
|
| 375 |
+
self.vit = None
|
| 376 |
+
self.config = config
|
| 377 |
+
self.model = HunYuanModel(config)
|
| 378 |
+
self.add_classification_head = config.add_classification_head
|
| 379 |
+
self.pad_id = config.pad_id
|
| 380 |
+
self.vocab_size = config.vocab_size
|
| 381 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 382 |
+
if config.add_classification_head:
|
| 383 |
+
self.pool_head = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
| 384 |
+
self.pool_head2 = nn.Linear(config.hidden_size, config.class_num, bias=False)
|
| 385 |
+
# Initialize weights and apply final processing
|
| 386 |
+
self.post_init()
|
| 387 |
+
|
| 388 |
+
def get_input_embeddings(self):
|
| 389 |
+
return self.model.embed_tokens
|
| 390 |
+
|
| 391 |
+
def set_input_embeddings(self, value):
|
| 392 |
+
self.model.embed_tokens = value
|
| 393 |
+
|
| 394 |
+
def get_output_embeddings(self):
|
| 395 |
+
return self.lm_head
|
| 396 |
+
|
| 397 |
+
def set_output_embeddings(self, new_embeddings):
|
| 398 |
+
self.lm_head = new_embeddings
|
| 399 |
+
|
| 400 |
+
def set_decoder(self, decoder):
|
| 401 |
+
self.model = decoder
|
| 402 |
+
|
| 403 |
+
def get_decoder(self):
|
| 404 |
+
return self.model
|
| 405 |
+
|
| 406 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
| 407 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 408 |
+
def forward(
|
| 409 |
+
self,
|
| 410 |
+
input_ids: torch.LongTensor = None,
|
| 411 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 412 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 413 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 414 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 415 |
+
labels: Optional[torch.LongTensor] = None,
|
| 416 |
+
use_cache: Optional[bool] = None,
|
| 417 |
+
output_attentions: Optional[bool] = None,
|
| 418 |
+
output_hidden_states: Optional[bool] = None,
|
| 419 |
+
return_dict: Optional[bool] = None,
|
| 420 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 421 |
+
r"""
|
| 422 |
+
Args:
|
| 423 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 424 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 425 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 426 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 427 |
+
|
| 428 |
+
Returns:
|
| 429 |
+
|
| 430 |
+
Example:
|
| 431 |
+
|
| 432 |
+
```python
|
| 433 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 434 |
+
|
| 435 |
+
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 436 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 437 |
+
|
| 438 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 439 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 440 |
+
|
| 441 |
+
>>> # Generate
|
| 442 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 443 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 444 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 445 |
+
```"""
|
| 446 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 447 |
+
output_hidden_states = (
|
| 448 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 449 |
+
)
|
| 450 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 451 |
+
|
| 452 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 453 |
+
outputs = self.model(
|
| 454 |
+
input_ids=input_ids,
|
| 455 |
+
attention_mask=attention_mask,
|
| 456 |
+
position_ids=position_ids,
|
| 457 |
+
past_key_values=past_key_values,
|
| 458 |
+
inputs_embeds=inputs_embeds,
|
| 459 |
+
use_cache=use_cache,
|
| 460 |
+
output_attentions=output_attentions,
|
| 461 |
+
output_hidden_states=output_hidden_states,
|
| 462 |
+
return_dict=return_dict,
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
hidden_states = outputs[0]
|
| 466 |
+
|
| 467 |
+
if not self.add_classification_head:
|
| 468 |
+
if self.config.pretraining_tp > 1:
|
| 469 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 470 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 471 |
+
logits = torch.cat(logits, dim=-1)
|
| 472 |
+
else:
|
| 473 |
+
logits = self.lm_head(hidden_states)
|
| 474 |
+
logits = logits.float()
|
| 475 |
+
else:
|
| 476 |
+
logits = hidden_states
|
| 477 |
+
logits = logits.float()
|
| 478 |
+
pooled_output = self.pool_head(logits)
|
| 479 |
+
pooled_output = torch.tanh(pooled_output)
|
| 480 |
+
pooled_output = self.pool_head2(pooled_output).contiguous() # bs * class_num
|
| 481 |
+
if len(pooled_output.shape) < 2:
|
| 482 |
+
raise ValueError("pooled_output does not have enough dimensions for transpose")
|
| 483 |
+
|
| 484 |
+
if self.config.pool_type == "mean":
|
| 485 |
+
reward = pooled_output.mean(dim=1).squeeze(-1)
|
| 486 |
+
elif self.config.pool_type == "last":
|
| 487 |
+
# bs * hidden_size
|
| 488 |
+
seq_length = (input_ids != self.pad_id).long().sum(dim=1) - 1
|
| 489 |
+
batch_size = input_ids.size(0)
|
| 490 |
+
reward = pooled_output[torch.arange(batch_size, device=pooled_output.device), seq_length].squeeze(-1)
|
| 491 |
+
else:
|
| 492 |
+
reward = pooled_output[:, 0].squeeze(-1)
|
| 493 |
+
|
| 494 |
+
loss = None
|
| 495 |
+
if labels is not None:
|
| 496 |
+
# Shift so that tokens < n predict n
|
| 497 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 498 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 499 |
+
# Flatten the tokens
|
| 500 |
+
loss_fct = CrossEntropyLoss()
|
| 501 |
+
shift_logits = shift_logits.reshape(-1, self.config.vocab_size)
|
| 502 |
+
shift_labels = shift_labels.reshape(-1)
|
| 503 |
+
# Enable model parallelism
|
| 504 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 505 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 506 |
+
|
| 507 |
+
if not return_dict:
|
| 508 |
+
output = (logits,) + outputs[1:]
|
| 509 |
+
return (loss,) + output if loss is not None else output
|
| 510 |
+
|
| 511 |
+
output = CausalLMOutputWithPast(
|
| 512 |
+
loss=loss,
|
| 513 |
+
logits=logits,
|
| 514 |
+
past_key_values=outputs.past_key_values,
|
| 515 |
+
hidden_states=outputs.hidden_states,
|
| 516 |
+
attentions=outputs.attentions,
|
| 517 |
+
)
|
| 518 |
+
if self.add_classification_head:
|
| 519 |
+
output['reward'] = reward
|
| 520 |
+
|
| 521 |
+
return output
|
| 522 |
+
|
| 523 |
+
def prepare_inputs_for_generation(
|
| 524 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 525 |
+
):
|
| 526 |
+
if past_key_values is not None:
|
| 527 |
+
if isinstance(past_key_values, Cache):
|
| 528 |
+
cache_length = past_key_values.get_seq_length()
|
| 529 |
+
past_length = past_key_values.seen_tokens
|
| 530 |
+
max_cache_length = past_key_values.get_max_length()
|
| 531 |
+
else:
|
| 532 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 533 |
+
max_cache_length = None
|
| 534 |
+
|
| 535 |
+
# Keep only the unprocessed tokens:
|
| 536 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 537 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
| 538 |
+
# input)
|
| 539 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 540 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
| 541 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 542 |
+
# input_ids based on the past_length.
|
| 543 |
+
elif past_length < input_ids.shape[1]:
|
| 544 |
+
input_ids = input_ids[:, past_length:]
|
| 545 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 546 |
+
|
| 547 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 548 |
+
if (
|
| 549 |
+
max_cache_length is not None
|
| 550 |
+
and attention_mask is not None
|
| 551 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 552 |
+
):
|
| 553 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 554 |
+
|
| 555 |
+
position_ids = kwargs.get("position_ids", None)
|
| 556 |
+
if attention_mask is not None and position_ids is None:
|
| 557 |
+
# create position_ids on the fly for batch generation
|
| 558 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 559 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 560 |
+
if past_key_values:
|
| 561 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 562 |
+
|
| 563 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 564 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 565 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 566 |
+
else:
|
| 567 |
+
model_inputs = {"input_ids": input_ids}
|
| 568 |
+
|
| 569 |
+
model_inputs.update(
|
| 570 |
+
{
|
| 571 |
+
"position_ids": position_ids,
|
| 572 |
+
"past_key_values": past_key_values,
|
| 573 |
+
"use_cache": kwargs.get("use_cache"),
|
| 574 |
+
"attention_mask": attention_mask,
|
| 575 |
+
}
|
| 576 |
+
)
|
| 577 |
+
return model_inputs
|
| 578 |
+
|
| 579 |
+
@staticmethod
|
| 580 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 581 |
+
reordered_past = ()
|
| 582 |
+
for layer_past in past_key_values:
|
| 583 |
+
reordered_past += (
|
| 584 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 585 |
+
)
|
| 586 |
+
return reordered_past
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
class MultimodelHunYuanForCausalLM(HunYuanForCausalLM):
|
| 590 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 591 |
+
|
| 592 |
+
def __init__(self, config: HunYuanConfig):
|
| 593 |
+
super().__init__(config)
|
| 594 |
+
|
| 595 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
| 596 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 597 |
+
def forward(
|
| 598 |
+
self,
|
| 599 |
+
input_ids: torch.LongTensor = None,
|
| 600 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 601 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 602 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 603 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 604 |
+
labels: Optional[torch.LongTensor] = None,
|
| 605 |
+
imgs: Optional[List[torch.FloatTensor]] = None,
|
| 606 |
+
imgs_pos: Optional[List[int]] = None,
|
| 607 |
+
use_cache: Optional[bool] = None,
|
| 608 |
+
output_attentions: Optional[bool] = None,
|
| 609 |
+
output_hidden_states: Optional[bool] = None,
|
| 610 |
+
return_dict: Optional[bool] = None,
|
| 611 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 612 |
+
r"""
|
| 613 |
+
Args:
|
| 614 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 615 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 616 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 617 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 618 |
+
|
| 619 |
+
Returns:
|
| 620 |
+
|
| 621 |
+
Example:
|
| 622 |
+
|
| 623 |
+
```python
|
| 624 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 625 |
+
|
| 626 |
+
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 627 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 628 |
+
|
| 629 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 630 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 631 |
+
|
| 632 |
+
>>> # Generate
|
| 633 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 634 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 635 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 636 |
+
```"""
|
| 637 |
+
mask_init_id = self.config.mask_init_id
|
| 638 |
+
pad_id = self.config.pad_token_id
|
| 639 |
+
eod_id = self.config.eod_token_id
|
| 640 |
+
image_token_id = self.config.image_token_id
|
| 641 |
+
im_start_id = self.config.im_start_id
|
| 642 |
+
im_end_id = self.config.im_end_id
|
| 643 |
+
video_start_id = self.config.video_start_id
|
| 644 |
+
video_end_id = self.config.video_end_id
|
| 645 |
+
|
| 646 |
+
if self.vit is not None and imgs is not None:
|
| 647 |
+
encoder_input = self.model.embed_tokens(input_ids)
|
| 648 |
+
if self.vit_type in ['NaVit', 'EvaVit', 'AnyResVit']:
|
| 649 |
+
inputs_embeds, input_ids = NaVitForward(input_ids, encoder_input, self.vit, imgs, imgs_pos, self.config.vit_input_resolution, \
|
| 650 |
+
im_start_id, im_end_id, image_token_id, self.config.anyres_vit_two_views, self.config.torch_dtype)
|
| 651 |
+
else:
|
| 652 |
+
inputs_embeds, input_ids = VitForward(input_ids, encoder_input, self.vit, self.vit_linear_encoder, imgs, imgs_pos, \
|
| 653 |
+
self.config.vit_input_resolution, self.config.vit_mapping_type, self.config.vit_patch, self.config.vit_token)
|
| 654 |
+
|
| 655 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 656 |
+
output_hidden_states = (
|
| 657 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 658 |
+
)
|
| 659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 660 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 661 |
+
|
| 662 |
+
outputs = self.model(
|
| 663 |
+
input_ids=input_ids,
|
| 664 |
+
attention_mask=attention_mask,
|
| 665 |
+
position_ids=position_ids,
|
| 666 |
+
past_key_values=past_key_values,
|
| 667 |
+
inputs_embeds=inputs_embeds,
|
| 668 |
+
use_cache=use_cache,
|
| 669 |
+
output_attentions=output_attentions,
|
| 670 |
+
output_hidden_states=output_hidden_states,
|
| 671 |
+
return_dict=return_dict,
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
hidden_states = outputs[0]
|
| 675 |
+
if self.config.pretraining_tp > 1:
|
| 676 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 677 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 678 |
+
logits = torch.cat(logits, dim=-1)
|
| 679 |
+
else:
|
| 680 |
+
logits = self.lm_head(hidden_states)
|
| 681 |
+
logits = logits.float()
|
| 682 |
+
|
| 683 |
+
loss = None
|
| 684 |
+
if labels is not None:
|
| 685 |
+
labels = labels.to(logits.device)
|
| 686 |
+
# Shift so that tokens < n predict n
|
| 687 |
+
shift_logits = logits
|
| 688 |
+
shift_labels = labels
|
| 689 |
+
# Flatten the tokens
|
| 690 |
+
loss_fct = CrossEntropyLoss()
|
| 691 |
+
shift_logits = shift_logits.reshape(-1, self.config.vocab_size)
|
| 692 |
+
shift_labels = shift_labels.reshape(-1)
|
| 693 |
+
shift_tokens = input_ids.reshape(-1)
|
| 694 |
+
# compute loss
|
| 695 |
+
mask = (shift_labels < mask_init_id) & (shift_labels != pad_id) & (shift_labels != image_token_id) & (shift_labels != im_start_id) \
|
| 696 |
+
& (shift_labels != im_end_id) & (shift_labels != video_start_id) & (shift_labels != video_end_id) & (shift_tokens != pad_id) & (shift_tokens != eod_id)
|
| 697 |
+
shift_logits = shift_logits[mask, :]
|
| 698 |
+
shift_labels = shift_labels[mask]
|
| 699 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 700 |
+
|
| 701 |
+
if not return_dict:
|
| 702 |
+
output = (logits,) + outputs[1:]
|
| 703 |
+
return (loss,) + output if loss is not None else output
|
| 704 |
+
|
| 705 |
+
return CausalLMOutputWithPast(
|
| 706 |
+
loss=loss,
|
| 707 |
+
logits=logits,
|
| 708 |
+
past_key_values=outputs.past_key_values,
|
| 709 |
+
hidden_states=outputs.hidden_states,
|
| 710 |
+
attentions=outputs.attentions,
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
def prepare_inputs_for_generation(
|
| 714 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 715 |
+
):
|
| 716 |
+
imgs = kwargs.pop("imgs", None)
|
| 717 |
+
imgs_pos = kwargs.pop("imgs_pos", None)
|
| 718 |
+
inputs = super().prepare_inputs_for_generation(
|
| 719 |
+
input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
if imgs is not None:
|
| 723 |
+
inputs['imgs'] = imgs
|
| 724 |
+
if imgs_pos is not None:
|
| 725 |
+
inputs['imgs_pos'] = imgs_pos
|
| 726 |
+
return inputs
|
| 727 |
+
|
| 728 |
+
@torch.no_grad()
|
| 729 |
+
def generate(
|
| 730 |
+
self,
|
| 731 |
+
inputs: Optional[torch.Tensor] = None,
|
| 732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 734 |
+
imgs: Optional[List[torch.FloatTensor]] = None,
|
| 735 |
+
imgs_pos: Optional[List[int]] = None,
|
| 736 |
+
**kwargs,
|
| 737 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 738 |
+
if "inputs_embeds" in kwargs:
|
| 739 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
| 740 |
+
|
| 741 |
+
if self.vit is not None:
|
| 742 |
+
encoder_input = self.model.embed_tokens(inputs)
|
| 743 |
+
if self.vit_type in ['NaVit', 'EvaVit', 'AnyResVit']:
|
| 744 |
+
inputs_embeds, input_ids = NaVitForward(inputs, encoder_input, self.vit, imgs, imgs_pos, self.config.vit_input_resolution, \
|
| 745 |
+
self.config.im_start_id, self.config.im_end_id, self.config.image_token_id, self.config.anyres_vit_two_views, self.config.torch_dtype)
|
| 746 |
+
else:
|
| 747 |
+
inputs_embeds, input_ids = VitForward(inputs, encoder_input, self.vit, self.vit_linear_encoder, imgs, imgs_pos, \
|
| 748 |
+
self.config.vit_input_resolution, self.config.vit_mapping_type, self.config.vit_patch, self.config.vit_token)
|
| 749 |
+
|
| 750 |
+
return super().generate(
|
| 751 |
+
inputs=input_ids,
|
| 752 |
+
position_ids=position_ids,
|
| 753 |
+
attention_mask=attention_mask,
|
| 754 |
+
inputs_embeds=inputs_embeds,
|
| 755 |
+
eos_token_id=self.config.eod_token_id,
|
| 756 |
+
**kwargs
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
@add_start_docstrings(
|
| 761 |
+
"""
|
| 762 |
+
The HunYuan Model transformer with a sequence classification head on top (linear layer).
|
| 763 |
+
|
| 764 |
+
[`HunYuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 765 |
+
(e.g. GPT-2) do.
|
| 766 |
+
|
| 767 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 768 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 769 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 770 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 771 |
+
each row of the batch).
|
| 772 |
+
""",
|
| 773 |
+
HUNYUAN_START_DOCSTRING,
|
| 774 |
+
)
|
| 775 |
+
class HunYuanForSequenceClassification(HunYuanPreTrainedModel):
|
| 776 |
+
def __init__(self, config):
|
| 777 |
+
super().__init__(config)
|
| 778 |
+
self.num_labels = config.num_labels
|
| 779 |
+
self.model = HunYuanModel(config)
|
| 780 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 781 |
+
|
| 782 |
+
# Initialize weights and apply final processing
|
| 783 |
+
self.post_init()
|
| 784 |
+
|
| 785 |
+
def get_input_embeddings(self):
|
| 786 |
+
return self.model.embed_tokens
|
| 787 |
+
|
| 788 |
+
def set_input_embeddings(self, value):
|
| 789 |
+
self.model.embed_tokens = value
|
| 790 |
+
|
| 791 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
| 792 |
+
def forward(
|
| 793 |
+
self,
|
| 794 |
+
input_ids: torch.LongTensor = None,
|
| 795 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 796 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 797 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 798 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 799 |
+
labels: Optional[torch.LongTensor] = None,
|
| 800 |
+
use_cache: Optional[bool] = None,
|
| 801 |
+
output_attentions: Optional[bool] = None,
|
| 802 |
+
output_hidden_states: Optional[bool] = None,
|
| 803 |
+
return_dict: Optional[bool] = None,
|
| 804 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 805 |
+
r"""
|
| 806 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 807 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 808 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 809 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 810 |
+
"""
|
| 811 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 812 |
+
|
| 813 |
+
transformer_outputs = self.model(
|
| 814 |
+
input_ids,
|
| 815 |
+
attention_mask=attention_mask,
|
| 816 |
+
position_ids=position_ids,
|
| 817 |
+
past_key_values=past_key_values,
|
| 818 |
+
inputs_embeds=inputs_embeds,
|
| 819 |
+
use_cache=use_cache,
|
| 820 |
+
output_attentions=output_attentions,
|
| 821 |
+
output_hidden_states=output_hidden_states,
|
| 822 |
+
return_dict=return_dict,
|
| 823 |
+
)
|
| 824 |
+
hidden_states = transformer_outputs[0]
|
| 825 |
+
logits = self.score(hidden_states)
|
| 826 |
+
|
| 827 |
+
if input_ids is not None:
|
| 828 |
+
batch_size = input_ids.shape[0]
|
| 829 |
+
else:
|
| 830 |
+
batch_size = inputs_embeds.shape[0]
|
| 831 |
+
|
| 832 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 833 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 834 |
+
if self.config.pad_token_id is None:
|
| 835 |
+
sequence_lengths = -1
|
| 836 |
+
else:
|
| 837 |
+
if input_ids is not None:
|
| 838 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 839 |
+
logits.device
|
| 840 |
+
)
|
| 841 |
+
else:
|
| 842 |
+
sequence_lengths = -1
|
| 843 |
+
|
| 844 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 845 |
+
|
| 846 |
+
loss = None
|
| 847 |
+
if labels is not None:
|
| 848 |
+
labels = labels.to(logits.device)
|
| 849 |
+
if self.config.problem_type is None:
|
| 850 |
+
if self.num_labels == 1:
|
| 851 |
+
self.config.problem_type = "regression"
|
| 852 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 853 |
+
self.config.problem_type = "single_label_classification"
|
| 854 |
+
else:
|
| 855 |
+
self.config.problem_type = "multi_label_classification"
|
| 856 |
+
|
| 857 |
+
if self.config.problem_type == "regression":
|
| 858 |
+
loss_fct = MSELoss()
|
| 859 |
+
if self.num_labels == 1:
|
| 860 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 861 |
+
else:
|
| 862 |
+
loss = loss_fct(pooled_logits, labels)
|
| 863 |
+
elif self.config.problem_type == "single_label_classification":
|
| 864 |
+
loss_fct = CrossEntropyLoss()
|
| 865 |
+
loss = loss_fct(pooled_logits.reshape(-1, self.num_labels), labels.reshape(-1))
|
| 866 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 867 |
+
loss_fct = BCEWithLogitsLoss()
|
| 868 |
+
loss = loss_fct(pooled_logits, labels)
|
| 869 |
+
if not return_dict:
|
| 870 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 871 |
+
return ((loss,) + output) if loss is not None else output
|
| 872 |
+
|
| 873 |
+
return SequenceClassifierOutputWithPast(
|
| 874 |
+
loss=loss,
|
| 875 |
+
logits=pooled_logits,
|
| 876 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 877 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 878 |
+
attentions=transformer_outputs.attentions,
|
| 879 |
+
)
|