---
license: apache-2.0
datasets:
- shibing624/sharegpt_gpt4
language:
- en
tags:
- TensorBlock
- GGUF
base_model: HWERI/pythia-70m-deduped-cleansharegpt-en
---
## HWERI/pythia-70m-deduped-cleansharegpt-en - GGUF
This repo contains GGUF format model files for [HWERI/pythia-70m-deduped-cleansharegpt-en](https://huggingface.co/HWERI/pythia-70m-deduped-cleansharegpt-en).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
## Prompt template
```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [pythia-70m-deduped-cleansharegpt-en-Q2_K.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q2_K.gguf) | Q2_K | 0.038 GB | smallest, significant quality loss - not recommended for most purposes |
| [pythia-70m-deduped-cleansharegpt-en-Q3_K_S.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q3_K_S.gguf) | Q3_K_S | 0.042 GB | very small, high quality loss |
| [pythia-70m-deduped-cleansharegpt-en-Q3_K_M.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q3_K_M.gguf) | Q3_K_M | 0.044 GB | very small, high quality loss |
| [pythia-70m-deduped-cleansharegpt-en-Q3_K_L.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q3_K_L.gguf) | Q3_K_L | 0.045 GB | small, substantial quality loss |
| [pythia-70m-deduped-cleansharegpt-en-Q4_0.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q4_0.gguf) | Q4_0 | 0.048 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [pythia-70m-deduped-cleansharegpt-en-Q4_K_S.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q4_K_S.gguf) | Q4_K_S | 0.048 GB | small, greater quality loss |
| [pythia-70m-deduped-cleansharegpt-en-Q4_K_M.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q4_K_M.gguf) | Q4_K_M | 0.049 GB | medium, balanced quality - recommended |
| [pythia-70m-deduped-cleansharegpt-en-Q5_0.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q5_0.gguf) | Q5_0 | 0.054 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [pythia-70m-deduped-cleansharegpt-en-Q5_K_S.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q5_K_S.gguf) | Q5_K_S | 0.054 GB | large, low quality loss - recommended |
| [pythia-70m-deduped-cleansharegpt-en-Q5_K_M.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q5_K_M.gguf) | Q5_K_M | 0.055 GB | large, very low quality loss - recommended |
| [pythia-70m-deduped-cleansharegpt-en-Q6_K.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q6_K.gguf) | Q6_K | 0.060 GB | very large, extremely low quality loss |
| [pythia-70m-deduped-cleansharegpt-en-Q8_0.gguf](https://huggingface.co/tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF/blob/main/pythia-70m-deduped-cleansharegpt-en-Q8_0.gguf) | Q8_0 | 0.077 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF --include "pythia-70m-deduped-cleansharegpt-en-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/HWERI_pythia-70m-deduped-cleansharegpt-en-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```