Tiago Barbosa de Lima commited on
Commit
0c4d3ef
·
1 Parent(s): e3c13d3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: punctuation-nilc-bert-large
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # punctuation-nilc-bert-large
19
+
20
+ This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1585
23
+ - Precision: 0.9053
24
+ - Recall: 0.8923
25
+ - F1: 0.8988
26
+ - Accuracy: 0.9755
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0742 | 1.0 | 1172 | 0.0653 | 0.9194 | 0.8702 | 0.8941 | 0.9742 |
58
+ | 0.0396 | 2.0 | 2344 | 0.0773 | 0.9088 | 0.8834 | 0.8959 | 0.9748 |
59
+ | 0.0153 | 3.0 | 3516 | 0.1171 | 0.8996 | 0.8817 | 0.8906 | 0.9739 |
60
+ | 0.0059 | 4.0 | 4688 | 0.1390 | 0.9174 | 0.8719 | 0.8941 | 0.9747 |
61
+ | 0.0024 | 5.0 | 5860 | 0.1585 | 0.9053 | 0.8923 | 0.8988 | 0.9755 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.24.0
67
+ - Pytorch 1.12.1+cu113
68
+ - Datasets 2.6.1
69
+ - Tokenizers 0.13.2