--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: punctuation-nilc-bert-large results: [] --- # punctuation-nilc-bert-large This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1585 - Precision: 0.9053 - Recall: 0.8923 - F1: 0.8988 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0742 | 1.0 | 1172 | 0.0653 | 0.9194 | 0.8702 | 0.8941 | 0.9742 | | 0.0396 | 2.0 | 2344 | 0.0773 | 0.9088 | 0.8834 | 0.8959 | 0.9748 | | 0.0153 | 3.0 | 3516 | 0.1171 | 0.8996 | 0.8817 | 0.8906 | 0.9739 | | 0.0059 | 4.0 | 4688 | 0.1390 | 0.9174 | 0.8719 | 0.8941 | 0.9747 | | 0.0024 | 5.0 | 5860 | 0.1585 | 0.9053 | 0.8923 | 0.8988 | 0.9755 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2