File size: 4,710 Bytes
a52c335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- KORMo-Team/KORMo-10B-sft
---

This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [KORMo-Team/KORMo-10B-sft](https://huggingface.co/KORMo-Team/KORMo-10B-sft).

### Example usage:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "tiny-random/kormo"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.'))
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)

source_model_id = "KORMo-Team/KORMo-10B-sft"
save_folder = "/tmp/tiny-random/kormo"

processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'

config_json['hidden_size'] = 8
config_json['intermediate_size'] = 64
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4

with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)

torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)

if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)

def modify_automap(path, source_model_id):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        content = json.load(f)
    automap = {}
    if content.get('auto_map', None) is not None:
        for key, value in content.get('auto_map').items():
            if isinstance(value, str):
                value = source_model_id + '--' + value.split('--')[-1]
            else:
                value = [(source_model_id + '--' + v.split('--')[-1]) if '.' in str(v) else v for v in value]
            automap[key] = value
        with open(path, 'w', encoding='utf-8') as f:
            json.dump({**content, 'auto_map': automap}, f, indent=2)

modify_automap(f"{save_folder}/config.json", source_model_id)
# modify_automap(f'{save_folder}/processor_config.json', source_model_id)
# modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id)
# modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
```

### Printing the model:

```text
KORMoForCausalLM(
  (model): KORMoModel(
    (embed_tokens): Embedding(125184, 8, padding_idx=125032)
    (layers): ModuleList(
      (0-1): 2 x DecoderLayer(
        (self_attn): Attention(
          (q_proj): Linear(in_features=8, out_features=1024, bias=False)
          (k_proj): Linear(in_features=8, out_features=512, bias=False)
          (v_proj): Linear(in_features=8, out_features=512, bias=False)
          (o_proj): Linear(in_features=1024, out_features=8, bias=False)
        )
        (mlp): MLP(
          (gate_proj): Linear(in_features=8, out_features=64, bias=False)
          (up_proj): Linear(in_features=8, out_features=64, bias=False)
          (down_proj): Linear(in_features=64, out_features=8, bias=False)
          (act_fn): SiLU()
        )
        (pre_attention_layernorm): RMSNorm((8,), eps=1e-05)
        (pre_mlp_layernorm): RMSNorm((8,), eps=1e-05)
      )
    )
    (norm): RMSNorm((8,), eps=1e-05)
    (rotary_emb): RotaryEmbedding()
  )
  (lm_head): Linear(in_features=8, out_features=125184, bias=False)
)
```