Training in progress, epoch 1
Browse files- adapter_model.safetensors +1 -1
- job_run_finetune_llama3_1_8b.py +172 -0
- training_args.bin +1 -1
adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 13648432
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:654ffab5d59c705d6a9955d68660fe9f935b3c23ea328b42abb4a43196d85511
|
| 3 |
size 13648432
|
job_run_finetune_llama3_1_8b.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Installing More Dependencies
|
| 2 |
+
import torch
|
| 3 |
+
from datasets import load_dataset, Dataset
|
| 4 |
+
from peft import LoraConfig, AutoPeftModelForCausalLM, get_peft_model, PeftModel
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments
|
| 6 |
+
from trl import SFTTrainer
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Configuration
|
| 10 |
+
#MODEL_ID = "NousResearch/Meta-Llama-3.1-8B-Instruct"
|
| 11 |
+
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 12 |
+
OUTPUT_DIR = "./fine_tunned_dodel_ul2"
|
| 13 |
+
DATASET_NAME = "your_dataset" # Remplacer par votre dataset
|
| 14 |
+
# Charger le modèle et le tokenizer
|
| 15 |
+
|
| 16 |
+
bnb_config = BitsAndBytesConfig(
|
| 17 |
+
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True
|
| 18 |
+
)
|
| 19 |
+
try:
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
MODEL_ID,
|
| 22 |
+
torch_dtype=torch.float16,
|
| 23 |
+
device_map="auto",
|
| 24 |
+
trust_remote_code=True,
|
| 25 |
+
quantization_config=bnb_config,
|
| 26 |
+
#max_memory={0: "18GB", "cpu": "24GB"} # Ajuste la mémoire GPU et CPU
|
| 27 |
+
)
|
| 28 |
+
except torch.cuda.OutOfMemoryError:
|
| 29 |
+
print("Erreur de mémoire GPU. Tentative avec des paramètres réduits...")
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
MODEL_ID,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
device_map="auto",
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
quantization_config=bnb_config,
|
| 36 |
+
#max_memory={0: "8GB", "cpu": "32GB"}, # Réduit la mémoire GPU, augmente CPU
|
| 37 |
+
load_in_8bit=True # Active la quantification 8-bit
|
| 38 |
+
)
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 40 |
+
tokenizer.pad_token = tokenizer.eos_token # Configure le pad_token comme étant l'eos_token
|
| 41 |
+
lora_config = LoraConfig(
|
| 42 |
+
r=8,
|
| 43 |
+
lora_alpha=32,
|
| 44 |
+
lora_dropout=0.05,
|
| 45 |
+
bias="none",
|
| 46 |
+
task_type="CAUSAL_LM"
|
| 47 |
+
)
|
| 48 |
+
# Appliquer LoRA au modèle
|
| 49 |
+
model = get_peft_model(model, lora_config)
|
| 50 |
+
# Préparer le dataset
|
| 51 |
+
dataset = dataset = load_dataset(
|
| 52 |
+
"json",
|
| 53 |
+
data_files={
|
| 54 |
+
"train": "datasets/train.json",
|
| 55 |
+
"validation": "datasets/validation.json",
|
| 56 |
+
"test": "datasets/test.json"
|
| 57 |
+
}
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def tokenize_function(examples):
|
| 61 |
+
# return self.tokenizer(
|
| 62 |
+
# examples["text"],
|
| 63 |
+
# padding="max_length",
|
| 64 |
+
# truncation=True,
|
| 65 |
+
# max_length=self.config.max_length
|
| 66 |
+
# )
|
| 67 |
+
"""
|
| 68 |
+
Fonction de prétraitement des exemples :
|
| 69 |
+
- Concatène le contexte et la question pour créer les entrées
|
| 70 |
+
- Tokenise les entrées et les réponses cibles
|
| 71 |
+
"""
|
| 72 |
+
# Concaténer contexte et question pour chaque exemple
|
| 73 |
+
inputs = [context + " " + question for context, question in zip(examples["context"], examples["question"])]
|
| 74 |
+
|
| 75 |
+
# Extraire les réponses ciblées
|
| 76 |
+
targets = examples["response"]
|
| 77 |
+
|
| 78 |
+
# Tokenisation des entrées avec padding et troncature
|
| 79 |
+
model_inputs = tokenizer(
|
| 80 |
+
inputs,
|
| 81 |
+
padding="max_length",
|
| 82 |
+
truncation=True,
|
| 83 |
+
max_length=512,
|
| 84 |
+
return_tensors="pt"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Tokenisation des cibles avec padding et troncature
|
| 88 |
+
with tokenizer.as_target_tokenizer():
|
| 89 |
+
labels = tokenizer(
|
| 90 |
+
targets,
|
| 91 |
+
padding="max_length",
|
| 92 |
+
truncation=True,
|
| 93 |
+
max_length=128,
|
| 94 |
+
return_tensors="pt"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Activation des gradients uniquement pour input_ids et labels
|
| 98 |
+
model_inputs["input_ids"] = model_inputs["input_ids"]
|
| 99 |
+
# model_inputs["labels"] = model_inputs["labels"]
|
| 100 |
+
|
| 101 |
+
# model_inputs["input_ids"] = model_inputs["input_ids"].cpu().requires_grad_(True).to(model.device)
|
| 102 |
+
# model_inputs["labels"] = model_inputs["labels"].cpu().requires_grad_(True).to(model.device)
|
| 103 |
+
return model_inputs
|
| 104 |
+
|
| 105 |
+
train_data = dataset['train']
|
| 106 |
+
eval_data = dataset['validation']
|
| 107 |
+
train_dataset = train_data.map(tokenize_function, batched=True)
|
| 108 |
+
eval_dataset = eval_data.map(tokenize_function, batched=True) if eval_data else None
|
| 109 |
+
# tokenized_dataset = dataset.map(
|
| 110 |
+
# lambda x: tokenizer(x["text"], truncation=True, padding="max_length", max_length=512),
|
| 111 |
+
# batched=True
|
| 112 |
+
# )
|
| 113 |
+
# Configuration de l'entraînement
|
| 114 |
+
peft_config = LoraConfig(
|
| 115 |
+
r=8, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM"
|
| 116 |
+
)
|
| 117 |
+
training_args = TrainingArguments(
|
| 118 |
+
output_dir=OUTPUT_DIR,
|
| 119 |
+
num_train_epochs=3,
|
| 120 |
+
per_device_train_batch_size=4, # Réduit de 4 à 2
|
| 121 |
+
gradient_accumulation_steps=16, # Augmenté de 4 à 8
|
| 122 |
+
learning_rate=2e-4,
|
| 123 |
+
fp16=True,
|
| 124 |
+
save_strategy="epoch",
|
| 125 |
+
gradient_checkpointing=True, # Active le gradient checkpointing
|
| 126 |
+
max_grad_norm=0.3,
|
| 127 |
+
push_to_hub=True # Limite le gradient pour économiser la mémoire
|
| 128 |
+
)
|
| 129 |
+
# Initialiser le trainer
|
| 130 |
+
trainer = SFTTrainer(
|
| 131 |
+
model=model,
|
| 132 |
+
train_dataset=train_dataset,
|
| 133 |
+
eval_dataset=eval_dataset,
|
| 134 |
+
peft_config=peft_config,
|
| 135 |
+
#dataset_text_field="text",
|
| 136 |
+
args=training_args,
|
| 137 |
+
tokenizer=tokenizer,
|
| 138 |
+
#packing=False,
|
| 139 |
+
max_seq_length=1024
|
| 140 |
+
)
|
| 141 |
+
# Entraînement
|
| 142 |
+
#trainer.train()
|
| 143 |
+
try:
|
| 144 |
+
# S'assurer que le modèle est en mode entraînement
|
| 145 |
+
model.train()
|
| 146 |
+
# Activer les gradients
|
| 147 |
+
torch.set_grad_enabled(True)
|
| 148 |
+
trainer.train()
|
| 149 |
+
|
| 150 |
+
# Merge avec le modèle original et sauvegarder
|
| 151 |
+
if isinstance(model, PeftModel):
|
| 152 |
+
merged_model = model.merge_and_unload()
|
| 153 |
+
else:
|
| 154 |
+
merged_model = model
|
| 155 |
+
# raise ValueError("Model is not a PeftModel with LoRA adapters")
|
| 156 |
+
# merged_model = model.merge_and_unload()
|
| 157 |
+
merged_model.save_pretrained(OUTPUT_DIR)
|
| 158 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 159 |
+
# Push sur Hugging Face Hub
|
| 160 |
+
merged_model.push_to_hub(f"{os.getenv('HF_USERNAME')}/Meta-Llama-3.1-8B-Instruct-finetuned")
|
| 161 |
+
tokenizer.push_to_hub(f"{os.getenv('HF_USERNAME')}/Meta-Llama-3.1-8B-Instruct-finetuned")
|
| 162 |
+
# except torch.cuda.OutOfMemoryError:
|
| 163 |
+
# print("Erreur de mémoire GPU pendant l'entraînement. Tentative avec des paramètres réduits...")
|
| 164 |
+
# training_args.per_device_train_batch_size //= 2
|
| 165 |
+
# training_args.gradient_accumulation_steps *= 2
|
| 166 |
+
# print(f"Nouveaux paramètres : batch_size={training_args.per_device_train_batch_size}, grad_accum={training_args.gradient_accumulation_steps}")
|
| 167 |
+
# trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)
|
| 168 |
+
# trainer.train()
|
| 169 |
+
|
| 170 |
+
except RuntimeError as e:
|
| 171 |
+
print(f"Erreur d'entraînement : {str(e)}")
|
| 172 |
+
raise
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a674e513a45017f67ae526348d95432a41d1e0ef0fc057b56ac1daaf8a284f9
|
| 3 |
size 5560
|