File size: 2,036 Bytes
9e50f10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_fi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_fi
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.679 | 4.0 | 200 | 0.5742 |
| 0.5413 | 8.0 | 400 | 0.4974 |
| 0.5076 | 12.0 | 600 | 0.4805 |
| 0.5097 | 16.0 | 800 | 0.4743 |
| 0.4837 | 20.0 | 1000 | 0.4655 |
| 0.4913 | 24.0 | 1200 | 0.4639 |
| 0.4777 | 28.0 | 1400 | 0.4632 |
| 0.484 | 32.0 | 1600 | 0.4623 |
| 0.4788 | 36.0 | 1800 | 0.4608 |
| 0.4711 | 40.0 | 2000 | 0.4599 |
### Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4
|